Research Article
BibTex RIS Cite
Year 2013, Volume: 34 Issue: 3, 29 - 40, 02.07.2013

Abstract

References

  • Gorguis., A., Appl. Math. Comput. 173 (2006) 126.
  • Abdou., M. A., Soliman.,A. A.,J. Comput. Appl Math,.181 (2005) 245.
  • Kaya., D., Appl. Math. Comput. 144 (2003) 353.
  • Zhu., Y., Tong. K., Chaolu. T., Choas,Soliton & Fractals, 33 (2007) 1411.
  • Mustafa Inc., Nonlinear Analysis., 69 (2008) 624.
  • Ablowitz., M. J., Clakson, P. A., Soliton, Nonlinear Evolution Equation and Inverse Scattering, Cambridge University Press, New York, 1991.
  • Hirota., R., Phys. Rev. Lett. 27 (1971) 1192.
  • Miurs., M. R. Backlund Transformation, Springer, Berlin,1978.
  • Weiss., J., Tabor, G., Carnevale, G., J. Math. Phys. 24 (1983) 522.
  • Yan., C., Phys. Lett. A., 224 (1996) 77.
  • Wang., M. L., Phys. Lett. A., 213 (1996) 279.
  • He., J. H., Choas,Soliton & Fractals, 26 (2006) 665.
  • He., J. H., Phys. Lett. A., 335 (2005) 182.
  • He., J. H., Int. J. Mod. Phys. B., 10 (2006) 1141
  • He., J. H., Non-perturbative methods for strongly nonlinear problmi Dissertation, De-Verlag im Internet GmbH, Berlin, 2006.
  • Abassy., T. A., El-Tawil, M. A., Saleh, Int. J. NonlinearSci. Numer. Simul. 5 (2004) 3
  • Zhang., S., Xia., T. C., Commun. Theor. Phys (Beijing, China) 46 (2006) 85. Liu.,S. K., Fu, Z. T., Liu., S. D., Zhao., Q., Phys. Lett. A., 289 (2001) 69.
  • Zhou., Y. B., Wang., M. L., Wang., Y. M., Phys. Lett. A., 308 (2003) 31
  • Chen.,Y., Yan., Z. Y., Appl. Math. Comput. 177 (2006) 85.
  • Pukhov., G.E., Differential transformations and mathematical modelling of physical processes, Kiev, 1986
  • Do˘ gan., N., Ert¨ urk., V. S., Momani., S., Akın., ¨ O., Yıldırım., A., Journal of King Saud University, 23 (2011) 223.
  • Chen., C.K., Ho, S.H., Appl. Math. Comput. 106 (1999) 171.
  • Bert., C.W., J. Heat. Transfer, 124 (2002) 208.
  • Chen., C.L., Yeh, W.Z., Jang, M.J., Appl. Simulation and Modelling, 28-30 (2004) 4
  • Liu., H., Song, Y., Appl. Math. Comput. 184 (2007) 748.
  • Abdel- Halim Hassan, I.H., Choas,Soliton & Fractals, 36 (2) (2006) 53.
  • Figen Kangalgil, Fatma Ayaz, Choas,Soliton & Fractals.,41 (2009) 464.
  • Figen Kangalgil, Fatma Ayaz, AJSE, 35 (2010) 203.
  • Figen Kangalgil, Fatma Ayaz, Selcuk. J. Appl. Math. , 8 (2007) 75.
  • Kurnaz, A., Oturan¸ c, G., Int. J. Comput. Math., 82 (2005) 369.
  • Ayaz., F., Appl. Math. Comput. 143 (2003) 361.
  • Ayaz., F., Appl. Math. Comput. 147 (2004) 547. 40

The Differential Transform Method For Solving one-dimensional Burger's Equation and K(m,p,1) Equation

Year 2013, Volume: 34 Issue: 3, 29 - 40, 02.07.2013

Abstract

In this paper, a differential transform method (DTM) has been applied to solve one-dimensional Burger's and K(m,p,1) equations with initial conditions and exact solutions have been obtained as same as [1-5]. The results show that DTM has got many merits and much more advantages and it is also a powerful mathematical tool for solving partial differential equations having wide applications in engineering and physics.

 

References

  • Gorguis., A., Appl. Math. Comput. 173 (2006) 126.
  • Abdou., M. A., Soliman.,A. A.,J. Comput. Appl Math,.181 (2005) 245.
  • Kaya., D., Appl. Math. Comput. 144 (2003) 353.
  • Zhu., Y., Tong. K., Chaolu. T., Choas,Soliton & Fractals, 33 (2007) 1411.
  • Mustafa Inc., Nonlinear Analysis., 69 (2008) 624.
  • Ablowitz., M. J., Clakson, P. A., Soliton, Nonlinear Evolution Equation and Inverse Scattering, Cambridge University Press, New York, 1991.
  • Hirota., R., Phys. Rev. Lett. 27 (1971) 1192.
  • Miurs., M. R. Backlund Transformation, Springer, Berlin,1978.
  • Weiss., J., Tabor, G., Carnevale, G., J. Math. Phys. 24 (1983) 522.
  • Yan., C., Phys. Lett. A., 224 (1996) 77.
  • Wang., M. L., Phys. Lett. A., 213 (1996) 279.
  • He., J. H., Choas,Soliton & Fractals, 26 (2006) 665.
  • He., J. H., Phys. Lett. A., 335 (2005) 182.
  • He., J. H., Int. J. Mod. Phys. B., 10 (2006) 1141
  • He., J. H., Non-perturbative methods for strongly nonlinear problmi Dissertation, De-Verlag im Internet GmbH, Berlin, 2006.
  • Abassy., T. A., El-Tawil, M. A., Saleh, Int. J. NonlinearSci. Numer. Simul. 5 (2004) 3
  • Zhang., S., Xia., T. C., Commun. Theor. Phys (Beijing, China) 46 (2006) 85. Liu.,S. K., Fu, Z. T., Liu., S. D., Zhao., Q., Phys. Lett. A., 289 (2001) 69.
  • Zhou., Y. B., Wang., M. L., Wang., Y. M., Phys. Lett. A., 308 (2003) 31
  • Chen.,Y., Yan., Z. Y., Appl. Math. Comput. 177 (2006) 85.
  • Pukhov., G.E., Differential transformations and mathematical modelling of physical processes, Kiev, 1986
  • Do˘ gan., N., Ert¨ urk., V. S., Momani., S., Akın., ¨ O., Yıldırım., A., Journal of King Saud University, 23 (2011) 223.
  • Chen., C.K., Ho, S.H., Appl. Math. Comput. 106 (1999) 171.
  • Bert., C.W., J. Heat. Transfer, 124 (2002) 208.
  • Chen., C.L., Yeh, W.Z., Jang, M.J., Appl. Simulation and Modelling, 28-30 (2004) 4
  • Liu., H., Song, Y., Appl. Math. Comput. 184 (2007) 748.
  • Abdel- Halim Hassan, I.H., Choas,Soliton & Fractals, 36 (2) (2006) 53.
  • Figen Kangalgil, Fatma Ayaz, Choas,Soliton & Fractals.,41 (2009) 464.
  • Figen Kangalgil, Fatma Ayaz, AJSE, 35 (2010) 203.
  • Figen Kangalgil, Fatma Ayaz, Selcuk. J. Appl. Math. , 8 (2007) 75.
  • Kurnaz, A., Oturan¸ c, G., Int. J. Comput. Math., 82 (2005) 369.
  • Ayaz., F., Appl. Math. Comput. 143 (2003) 361.
  • Ayaz., F., Appl. Math. Comput. 147 (2004) 547. 40
There are 32 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Editorial
Authors

Figen Kangalgil

Publication Date July 2, 2013
Published in Issue Year 2013 Volume: 34 Issue: 3

Cite

APA Kangalgil, F. (2013). The Differential Transform Method For Solving one-dimensional Burger’s Equation and K(m,p,1) Equation. Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi, 34(3), 29-40.
AMA Kangalgil F. The Differential Transform Method For Solving one-dimensional Burger’s Equation and K(m,p,1) Equation. Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi. December 2013;34(3):29-40.
Chicago Kangalgil, Figen. “The Differential Transform Method For Solving One-Dimensional Burger’s Equation and K(m,p,1) Equation”. Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi 34, no. 3 (December 2013): 29-40.
EndNote Kangalgil F (December 1, 2013) The Differential Transform Method For Solving one-dimensional Burger’s Equation and K(m,p,1) Equation. Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi 34 3 29–40.
IEEE F. Kangalgil, “The Differential Transform Method For Solving one-dimensional Burger’s Equation and K(m,p,1) Equation”, Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi, vol. 34, no. 3, pp. 29–40, 2013.
ISNAD Kangalgil, Figen. “The Differential Transform Method For Solving One-Dimensional Burger’s Equation and K(m,p,1) Equation”. Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi 34/3 (December 2013), 29-40.
JAMA Kangalgil F. The Differential Transform Method For Solving one-dimensional Burger’s Equation and K(m,p,1) Equation. Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi. 2013;34:29–40.
MLA Kangalgil, Figen. “The Differential Transform Method For Solving One-Dimensional Burger’s Equation and K(m,p,1) Equation”. Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi, vol. 34, no. 3, 2013, pp. 29-40.
Vancouver Kangalgil F. The Differential Transform Method For Solving one-dimensional Burger’s Equation and K(m,p,1) Equation. Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi. 2013;34(3):29-40.