Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2013, Cilt: 34 Sayı: 3, 29 - 40, 02.07.2013

Öz

Kaynakça

  • Gorguis., A., Appl. Math. Comput. 173 (2006) 126.
  • Abdou., M. A., Soliman.,A. A.,J. Comput. Appl Math,.181 (2005) 245.
  • Kaya., D., Appl. Math. Comput. 144 (2003) 353.
  • Zhu., Y., Tong. K., Chaolu. T., Choas,Soliton & Fractals, 33 (2007) 1411.
  • Mustafa Inc., Nonlinear Analysis., 69 (2008) 624.
  • Ablowitz., M. J., Clakson, P. A., Soliton, Nonlinear Evolution Equation and Inverse Scattering, Cambridge University Press, New York, 1991.
  • Hirota., R., Phys. Rev. Lett. 27 (1971) 1192.
  • Miurs., M. R. Backlund Transformation, Springer, Berlin,1978.
  • Weiss., J., Tabor, G., Carnevale, G., J. Math. Phys. 24 (1983) 522.
  • Yan., C., Phys. Lett. A., 224 (1996) 77.
  • Wang., M. L., Phys. Lett. A., 213 (1996) 279.
  • He., J. H., Choas,Soliton & Fractals, 26 (2006) 665.
  • He., J. H., Phys. Lett. A., 335 (2005) 182.
  • He., J. H., Int. J. Mod. Phys. B., 10 (2006) 1141
  • He., J. H., Non-perturbative methods for strongly nonlinear problmi Dissertation, De-Verlag im Internet GmbH, Berlin, 2006.
  • Abassy., T. A., El-Tawil, M. A., Saleh, Int. J. NonlinearSci. Numer. Simul. 5 (2004) 3
  • Zhang., S., Xia., T. C., Commun. Theor. Phys (Beijing, China) 46 (2006) 85. Liu.,S. K., Fu, Z. T., Liu., S. D., Zhao., Q., Phys. Lett. A., 289 (2001) 69.
  • Zhou., Y. B., Wang., M. L., Wang., Y. M., Phys. Lett. A., 308 (2003) 31
  • Chen.,Y., Yan., Z. Y., Appl. Math. Comput. 177 (2006) 85.
  • Pukhov., G.E., Differential transformations and mathematical modelling of physical processes, Kiev, 1986
  • Do˘ gan., N., Ert¨ urk., V. S., Momani., S., Akın., ¨ O., Yıldırım., A., Journal of King Saud University, 23 (2011) 223.
  • Chen., C.K., Ho, S.H., Appl. Math. Comput. 106 (1999) 171.
  • Bert., C.W., J. Heat. Transfer, 124 (2002) 208.
  • Chen., C.L., Yeh, W.Z., Jang, M.J., Appl. Simulation and Modelling, 28-30 (2004) 4
  • Liu., H., Song, Y., Appl. Math. Comput. 184 (2007) 748.
  • Abdel- Halim Hassan, I.H., Choas,Soliton & Fractals, 36 (2) (2006) 53.
  • Figen Kangalgil, Fatma Ayaz, Choas,Soliton & Fractals.,41 (2009) 464.
  • Figen Kangalgil, Fatma Ayaz, AJSE, 35 (2010) 203.
  • Figen Kangalgil, Fatma Ayaz, Selcuk. J. Appl. Math. , 8 (2007) 75.
  • Kurnaz, A., Oturan¸ c, G., Int. J. Comput. Math., 82 (2005) 369.
  • Ayaz., F., Appl. Math. Comput. 143 (2003) 361.
  • Ayaz., F., Appl. Math. Comput. 147 (2004) 547. 40

The Differential Transform Method For Solving one-dimensional Burger's Equation and K(m,p,1) Equation

Yıl 2013, Cilt: 34 Sayı: 3, 29 - 40, 02.07.2013

Öz

In this paper, a differential transform method (DTM) has been applied to solve one-dimensional Burger's and K(m,p,1) equations with initial conditions and exact solutions have been obtained as same as [1-5]. The results show that DTM has got many merits and much more advantages and it is also a powerful mathematical tool for solving partial differential equations having wide applications in engineering and physics.

 

Kaynakça

  • Gorguis., A., Appl. Math. Comput. 173 (2006) 126.
  • Abdou., M. A., Soliman.,A. A.,J. Comput. Appl Math,.181 (2005) 245.
  • Kaya., D., Appl. Math. Comput. 144 (2003) 353.
  • Zhu., Y., Tong. K., Chaolu. T., Choas,Soliton & Fractals, 33 (2007) 1411.
  • Mustafa Inc., Nonlinear Analysis., 69 (2008) 624.
  • Ablowitz., M. J., Clakson, P. A., Soliton, Nonlinear Evolution Equation and Inverse Scattering, Cambridge University Press, New York, 1991.
  • Hirota., R., Phys. Rev. Lett. 27 (1971) 1192.
  • Miurs., M. R. Backlund Transformation, Springer, Berlin,1978.
  • Weiss., J., Tabor, G., Carnevale, G., J. Math. Phys. 24 (1983) 522.
  • Yan., C., Phys. Lett. A., 224 (1996) 77.
  • Wang., M. L., Phys. Lett. A., 213 (1996) 279.
  • He., J. H., Choas,Soliton & Fractals, 26 (2006) 665.
  • He., J. H., Phys. Lett. A., 335 (2005) 182.
  • He., J. H., Int. J. Mod. Phys. B., 10 (2006) 1141
  • He., J. H., Non-perturbative methods for strongly nonlinear problmi Dissertation, De-Verlag im Internet GmbH, Berlin, 2006.
  • Abassy., T. A., El-Tawil, M. A., Saleh, Int. J. NonlinearSci. Numer. Simul. 5 (2004) 3
  • Zhang., S., Xia., T. C., Commun. Theor. Phys (Beijing, China) 46 (2006) 85. Liu.,S. K., Fu, Z. T., Liu., S. D., Zhao., Q., Phys. Lett. A., 289 (2001) 69.
  • Zhou., Y. B., Wang., M. L., Wang., Y. M., Phys. Lett. A., 308 (2003) 31
  • Chen.,Y., Yan., Z. Y., Appl. Math. Comput. 177 (2006) 85.
  • Pukhov., G.E., Differential transformations and mathematical modelling of physical processes, Kiev, 1986
  • Do˘ gan., N., Ert¨ urk., V. S., Momani., S., Akın., ¨ O., Yıldırım., A., Journal of King Saud University, 23 (2011) 223.
  • Chen., C.K., Ho, S.H., Appl. Math. Comput. 106 (1999) 171.
  • Bert., C.W., J. Heat. Transfer, 124 (2002) 208.
  • Chen., C.L., Yeh, W.Z., Jang, M.J., Appl. Simulation and Modelling, 28-30 (2004) 4
  • Liu., H., Song, Y., Appl. Math. Comput. 184 (2007) 748.
  • Abdel- Halim Hassan, I.H., Choas,Soliton & Fractals, 36 (2) (2006) 53.
  • Figen Kangalgil, Fatma Ayaz, Choas,Soliton & Fractals.,41 (2009) 464.
  • Figen Kangalgil, Fatma Ayaz, AJSE, 35 (2010) 203.
  • Figen Kangalgil, Fatma Ayaz, Selcuk. J. Appl. Math. , 8 (2007) 75.
  • Kurnaz, A., Oturan¸ c, G., Int. J. Comput. Math., 82 (2005) 369.
  • Ayaz., F., Appl. Math. Comput. 143 (2003) 361.
  • Ayaz., F., Appl. Math. Comput. 147 (2004) 547. 40
Toplam 32 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Editöriyal
Yazarlar

Figen Kangalgil

Yayımlanma Tarihi 2 Temmuz 2013
Yayımlandığı Sayı Yıl 2013 Cilt: 34 Sayı: 3

Kaynak Göster

APA Kangalgil, F. (2013). The Differential Transform Method For Solving one-dimensional Burger’s Equation and K(m,p,1) Equation. Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi, 34(3), 29-40.
AMA Kangalgil F. The Differential Transform Method For Solving one-dimensional Burger’s Equation and K(m,p,1) Equation. Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi. Aralık 2013;34(3):29-40.
Chicago Kangalgil, Figen. “The Differential Transform Method For Solving One-Dimensional Burger’s Equation and K(m,p,1) Equation”. Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi 34, sy. 3 (Aralık 2013): 29-40.
EndNote Kangalgil F (01 Aralık 2013) The Differential Transform Method For Solving one-dimensional Burger’s Equation and K(m,p,1) Equation. Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi 34 3 29–40.
IEEE F. Kangalgil, “The Differential Transform Method For Solving one-dimensional Burger’s Equation and K(m,p,1) Equation”, Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi, c. 34, sy. 3, ss. 29–40, 2013.
ISNAD Kangalgil, Figen. “The Differential Transform Method For Solving One-Dimensional Burger’s Equation and K(m,p,1) Equation”. Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi 34/3 (Aralık 2013), 29-40.
JAMA Kangalgil F. The Differential Transform Method For Solving one-dimensional Burger’s Equation and K(m,p,1) Equation. Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi. 2013;34:29–40.
MLA Kangalgil, Figen. “The Differential Transform Method For Solving One-Dimensional Burger’s Equation and K(m,p,1) Equation”. Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi, c. 34, sy. 3, 2013, ss. 29-40.
Vancouver Kangalgil F. The Differential Transform Method For Solving one-dimensional Burger’s Equation and K(m,p,1) Equation. Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi. 2013;34(3):29-40.