Araştırma Makalesi
BibTex RIS Kaynak Göster

Electroless Ni-B Coating and Heat Treatment Application for Rail Fastener Elements

Yıl 2024, , 67 - 78, 31.07.2024
https://doi.org/10.47072/demiryolu.1471045

Öz

In recent years, the speed of rail system vehicles and the amount of load they carry have increased. This situation makes it difficult for urban and high-speed train lines to adapt to today's conditions. For this purpose, Zn-Al coating is generally used to increase the wear, corrosion and fatigue resistance of rail fasteners. Reasons such as Zn-Al coating not having sufficient hardness and wear resistance, zinc baths not being sustainable and environmentally friendly, and non-homogeneous coating thickness make Zn-Al coating disadvantageous. In this study, as an alternative to Zn-Al coating, SKL14 tension clamps were coated with electroless Ni-B and heat treated. In the examination of the coating surfaces, some scratches, pits and discontinuities were observed on the Zn-Al coating surfaces, while on the Ni-B coating surfaces, voids, pores, scratches, pits, discontinuities, flowing, blistering, flaking, cracking, capillary breaks, etc. were observed. No defects were observed. When examining the cross-sectional views of the coatings, it was observed that the Zn-Al coating thickness was not homogeneous and the average coating thickness was approximately 22.5µm, and that it did not adhere very well to the substrate material due to flaking, crust, discontinuity. No flaking, crusting or discontinuity was observed in Ni-B coatings, a homogeneous coating thickness was obtained and it was observed that it adhered very well to the substrate material, and the coating thickness was approximately 19.5 µm. As a result of the SEM analysis of the coating surfaces, a heterogeneous structure with roughness, cracks and voids was observed on the Zn-Al coating surface. The cauliflower form of Ni-B coatings, resulting from nodules that create irregular, textured and multi-layered clusters on the surface, was observed. It was observed that as a result of heat treatment, grain sizes decreased and grain boundaries became more distinct. This is explained by the fact that heat treatment increases the hardness and wear resistance of the coating. As a result, Ni-B coating and heat treatment have been successfully applied to tension clamps and represent a good alternative to Zn-Al coatings.

Kaynakça

  • [1] J. Liu, B. Jiang, C. Zhang, G. Li, Y. Dai, and L. Chen, “Evolution during hot rolling and control by thermomechanical control process of surface decarburization on 38Si7 spring steel,” Journal of Materials Engineering and Performance, vol. 31, no. 11, pp. 8677–8686, 2022, doi:10.1007/s11665-022-06956-5
  • [2] Y. Liu, X. Jiang, Q. Li, and H. Liu, “Failure analysis and fatigue life prediction of high-speed rail clips based on dic technique,” Advances in Mechanical Engineering, vol. 13, no. 12, 2021, doi: https://doi.org/10.1177/16878140211066225
  • [3] D. Ferreño, J. A. Casado, I. A. Carrascal, S. Diego, E. Ruiz, M. Saiz, J. A. Sainz-Aja, and A. I. Cimentada, “Experimental and finite element fatigue assessment of the spring clip of the SKL-1 railway fastening system,” Engineering Structures, vol. 188, pp. 553–563, 2019, doi: https://doi.org/10.1016/j.engstruct.2019.03.053
  • [4] M. Chen, W. Zhai, S. Zhu, L. Xu, and Y. Sun, “Vibration-based damage detection of rail fastener using fully convolutional networks,” Vehicle System Dynamics, vol. 60, no. 7, pp. 2191–2210, 2022, doi: 10.1080/00423114.2021.1896010
  • [5] Y. Lu, H. Xie, J. Wang, Z. Li, F. Jia, H. Wu, J. Han, and Z. Jiang, “Influence of hot compressive parameters on flow behavior and microstructure evolution in a commercial medium carbon micro-alloyed spring steel,” Journal of Manufacturing Processes, vol. 58, pp. 1171–1181, 2020, doi: https://doi.org/10.1016/j.jmapro.2020.09.021
  • [6] M. Sol-Sánchez, L. Pirozzolo, F. Moreno-Navarro, and M. C. Rubio-Gámez, “A study into the mechanical performance of different configurations for the railway track section: a laboratory approach,” Engineering Structures, vol. 119, pp. 13–23, 2016, doi: https://doi.org/10.1016/j.engstruct.2016.04.008
  • [7] W. Peng, J. Zhang, X. Yang, Z. Zhu, and S. Liu, “Failure analysis on the collapse of leaf spring steels during cold-punching,” Engineering Failure Analysis, vol. 17, no. 4, pp. 971–978, 2010, doi: https://doi.org/10.1016/j.engfailanal.2009.11.008
  • [8] C. Xu, Y. Liang, M. Yang, J. Yu, and X. Peng, “Effects of the ultrasonic assisted surface rolling process on the fatigue crack initiation position distribution and fatigue life of 51CrV4 spring steel,” Materials, Vol. 14, Page 2565, 2021, doi:10.3390/MA14102565
  • [9] C. L. Zhang, L. Y. Zhou, and Y. Z. Liu, “Surface decarburization characteristics and relation between decarburized types and heating temperature of spring steel 60Si2MnA,” International Journal of Minerals, Metallurgy and Materials, vol. 20, no. 8, pp. 720–724, 2013, doi:10.1007/s12613-013-0789-1
  • [10] D. Ma, J. Shi, Z. Yan, and L. Sun, “Failure analysis of fatigue damage for fastening clips in the ballastless track of high-speed railway considering random track irregularities,” Engineering Failure Analysis, vol. 131, no. 105897, 2022, doi:10.1007/s12613-013-0789-1
  • [11] H. Wang, F. Su, Z. Wen, and C. Li, “Effects of Mn and Si on the ferrite decarburization of spring steel,” Journal of Materials Research and Technology, vol. 27, pp. 363–371, 2023, doi: https://doi.org/10.1016/j.jmrt.2023.09.259
  • [12] N. Zhang, C. Fu, B. Jiang, L. Sun, and Y. Liu, “Failure analysis of fatigue fracture for 60Si2Mn steel fastening clip in the track of high-speed railway,” Engineering Failure Analysis, vol. 142, no. 106757, 2022, doi: https://doi.org/10.1016/j.engfailanal.2022.106757
  • [13] X. W. Wang, Q. F. Hu, C. L. Zhang, L. Chen, C. Y. Zhu, B. Tao, B. Jiang, and Y. Z. Liu, “Optimization of heat treatment for 38Si7 spring steel with excellent mechanical properties and controlled decarburization,” Materials, vol. 15, no. 11, 2022, doi:10.3390/ma15113763
  • [14] H. Kania, J. Mendala, J. Kozuba, and M. Saternus, “Development of bath chemical composition for batch hot-dip galvanizing—a review,” Materials, vol. 13, no. 18, pp. 4168, 2020, doi:10.3390/MA13184168
  • [15] M. Klekotka, K. Zielińska, A. Stankiewicz, and M. Kuciej, “Tribological and anticorrosion performance of electroplated zinc based nanocomposite coatings,” Coatings, vol. 10, no. 6, pp. 594, 2020, doi:10.3390/coatings10060594
  • [16] Q. Li, H. Lu, J. Cui, M. An, and D. Li, “Electrodeposition of nanocrystalline zinc on steel for enhanced resistance to corrosive wear,” Surface and Coatings Technology, vol. 304, pp. 567–573, 2016, doi: https://doi.org/10.1016/j.surfcoat.2016.07.056
  • [17] I. D. Utu, R. Muntean, and I. Mitelea, “Corrosion and wear properties of Zn-based composite coatings,” Journal of Materials Engineering and Performance, vol. 29 no. 8, pp. 5360–5365, 2020, doi: https://doi.org/10.1007/s11665-020-04995-4
  • [18] A. Mukhopadhyay, T. K. Barman, P. Sahoo, and J. P. Davim, “Comparative study of tribological behavior of electroless Ni–B, Ni–B–Mo, and Ni–B–W coatings at room and high temperatures,” Lubricants, vol. 6, no. 3, pp. 67, 2018, doi:10.1177/1350650118755781
  • [19] A. Brenner, and G. E. Riddell, “Nickel plating on steel by chemical reduction,” Journal of Research of the National Bureau of Standards, vol. 37, no. 1, pp. 31, 1946, doi:10.6028/jres.037.019
  • [20] V. Vitry, and L. Bonin, “Increase of boron content in electroless nickel-boron coating by modification of plating conditions,” Surface and Coatings Technology, vol. 311, pp. 164–171, 2017, doi: https://doi.org/10.1016/j.surfcoat.2017.01.009
  • [21] S. Pal, and V. Jayaram, “Effect of microstructure on the hardness and dry sliding behavior of electroless Ni–B coating”. Materialia, vol. 4, pp. 47–64, 2018, doi: https://doi.org/10.1016/j.mtla.2018.09.004
  • [22] P. Sahoo, and S. K. Das, “Tribology of electroless nickel coatings–a review,” Materials & Design, vol. 32, no. 4, pp. 1760–1775, 2011, doi: https://doi.org/10.1016/j.matdes.2010.11.013
  • [23] M. Yunacti, V. Vitry, A. Montagne, and M. H. Staia, “Replacing toxic hard chrome coatings: exploring the tribocorrosion behaviour of electroless nickel-boron coatings,” Coatings, vol. 13, no. 12, pp. 2046, 2023, doi:10.3390/coatings13122046
  • [24] V. Vitry, J. Hastir, A. Mégret, S. Yazdani, M. Yunacti, and L. Bonin, “Recent advances in electroless nickel boron coatings,” Surface and Coatings Technology, vol. 429, no. 127937, 2022, doi: https://doi.org/10.1016/j.surfcoat.2021.127937
  • [25] V. Vitry, A. F. Kanta, and F. Delaunois, “Mechanical and wear characterization of electroless nickel-boron coatings,” Surface and Coatings Technology, vol. 206, no. 7, pp. 1879–1885, 2011, doi: https://doi.org/10.1016/j.surfcoat.2016.10.021
  • [26] L. Bonin, and V. Vitry, “Mechanical and wear characterization of electroless nickel mono and bilayers and high boron-mid phosphorus electroless nickel duplex coatings,” Surface and Coatings Technology, vol. 307, pp. 957–962, 2016, doi: https://doi.org/10.1016/j.surfcoat.2016.10.021
  • [27] V. Vitry, and F. Delaunois, “Nanostructured electroless nickel-boron coatings for wear resistance,” Anti-Abrasive Nanocoatings: Current and Future Applications, pp. 157–199, 2015, doi: https://doi.org/10.1016/B978-0-85709-211-3.00007-8
  • [28] K. Krishnaveni, T. S. N. Sankara Narayanan, and S. K. Seshadri, “Electroless Ni–B coatings: preparation and evaluation of hardness and wear resistance,” Surface and Coatings Technology, vol. 190, no. 1, pp. 115–121, 2005, doi: https://doi.org/10.1016/j.surfcoat.2004.01.038
  • [29] R. Tima, and F. Mahboubi, “Effect of plasma nitriding temperature on microstructure and wear properties of electroless nickel-boron coatings,” Surface and Coatings Technology, vol. 415, no. 127084, 2021, doi: https://doi.org/10.1016/j.surfcoat.2021.127084
  • [30] F. Bülbül, H. Altun, V. Ezirmik, and Ö. Küçük, “Investigation of structural, tribological and corrosion properties of electroless Ni–B coating deposited on 316L stainless steel,” Journal of Engineering Tribology, vol. 227, no. 6, pp. 629-639, 2012, doi:10.1177/1350650112464928
  • [31] E. Correa, A. A. Zuleta, L. Guerra, M. A. Gómez, J. G. Castaño, F. Echeverría, H. Liu, P. Skeldon, and G. E. Thompson, “Tribological behavior of electroless Ni–B coatings on magnesium and AZ91D alloy,” Wear, vol. 305, no. 1–2, pp. 115–123, 2013, doi: https://doi.org/10.1016/j.wear.2013.06.004
  • [32] F. Madah, C. Dehghanian, and A. A. Amadeh, “Investigations on the wear mechanisms of electroless Ni–B coating during dry sliding and endurance life of the worn surfaces,” Surface and Coatings Technology, vol. 282, pp. 6–15, 2015, doi: https://doi.org/10.1016/j.surfcoat.2015.09.003
  • [33] J. N. Balaraju, A. Priyadarshi, V. Kumar, N. T. Manikandanath, P. P. Kumar, and B. Ravisankar, “Hardness and wear behaviour of electroless Ni–B coatings,” Materials Science and Technology, vol. 32, no.16, pp. 1654–1665, 2016, doi:10.1080/02670836.2015.1137683
  • [34] A. Mukhopadhyay, T. K. Barman, and P. Sahoo, “Effect of operating temperature on tribological behavior of as-plated Ni-B coating deposited by electroless method,” Tribology Transactions, vol. 61, no. 1, pp. 41–52, 2018, doi:10.1080/10402004.2016.1271929
  • [35] D. Gültekin, E. Duru, and H. Akbulut, “Improved wear behaviors of lead-free electroless NiB and Ni-B/CeO2 composite coatings,” Surface and Coatings Technology, vol. 422, no. 127525, 2021, doi: https://doi.org/10.1016/j.surfcoat.2021.127525
  • [36] A. Bayatlı, E. F. Şahin, and M. Kocabaş, “Effect of boron carbide reinforcement on surface properties of electroless Ni–B and Ni–B–W coatings,” Materials Chemistry and Physics, vol. 305, no. 127899, 2023, doi: https://doi.org/10.1016/j.matchemphys.2023.127899
  • [37] R. Agrawal, L. Gupta, S. Jain, R. Sharma, and A. Mukhopadhyay, “Electroless Ni–B coating formed from a stabilizer-free double bath,” Transactions of the Indian Institute of Metals, vol. 77, no. 4, pp. 1039-1051, 2024, doi: https://doi.org/10.1007/s12666-023-03220-9
  • [38] H. Çuğ ve M. Dursunlar, “Termit ve yakma alın kaynağı ile birleştirilmiş R260 kalite rayın mikroyapı ve mekanik özelliklerinin incelenmesi”, Demiryolu Mühendisliği, sy. 14, ss. 167–179, Temmuz 2021, doi: 10.47072/demiryolu.944266

Ray Bağlantı Elemanlarına Akımsız Ni-B Kaplama ve Isıl İşlem Uygulamaları

Yıl 2024, , 67 - 78, 31.07.2024
https://doi.org/10.47072/demiryolu.1471045

Öz

Son yıllarda raylı sistem araçlarının hızı ve taşıdığı yük miktarları artmıştır. Bu durum kent içi ve yüksek hızlı tren hatlarının günümüz koşullarına uyumunu zorlaştırmaktadır. Bu amaçla ray bağlantı elemanlarının aşınma, korozyon ve yorulma dayanımlarının artırılması için genellikle Zn-Al kaplanarak kullanılmaktadır. Zn-Al kaplamanın yeterli sertlik ve aşınma direncine sahip olmaması, çinko banyolarının sürdürülebilir ve çevreci olmaması, homojen olmayan kaplama kalınlığı gibi nedenler Zn-Al kaplamayı dezavantajlı kılmaktadır. Bu çalışmada Zn-Al kaplamaya alternatif olarak, SKL14 gergi kıskaçları akımsız Ni-B kaplanmış ve ısıl işlem uygulanmıştır. Kaplama yüzeylerinin incelenmesinde, Zn-Al kaplama yüzeylerinde bazı çizik, çukur ve süreksizlikler gözlemlenmiş olup, Ni-B kaplama yüzeylerinde ise boşluk, gözenek, çizik, çukur, süreksizlik, akma, kabarma, pullanma, çatlama, kılcal kırılma vb. herhangi bir kusur gözlemlenmemiştir. Kaplamaların kesitten görünüşlerinin incelemesinde, Zn-Al kaplama kalınlığının homojen olmadığı ve kaplama kalınlığının ortalama yaklaşık 22,5µm olduğu, atma, kabuk, süreksizlik ile altlık malzemeye çok iyi yapışmadığı gözlemlenmiştir. Ni-B kaplamalarda atma, kabuklanma ve süreksizlik gözlemlenmemiş olup, homojen bir kaplama kalınlığı elde edilmiş ve altlık malzemeye çok iyi bir şekilde yapıştığı, kaplama kalınlıklarının yaklaşık ise 19,5 µm olduğu gözlemlenmiştir. Kaplama yüzeylerinin SEM analizi sonucunda, Zn-Al kaplama yüzeyinde pürüz, çatlak ve boşlukların olduğu heterojen bir yapı gözlemlenmiştir. Ni-B kaplamaların ise yüzeyde düzensiz, dokulu ve çok katmanlı küme oluşmasını sağlayan nodüllerden kaynaklanan karnabahar formu gözlemlenmiştir. Isıl işlem sonucu, tane boyutlarının küçüldüğü ve tane sınırlarının daha belirgin hale geldiği gözlemlenmiştir. Bu durum, ısıl işlemin kaplamanın sertlik ve aşınma direncini artırmasıyla açıklanmaktadır. Sonuç olarak, gergi kıskaçlarına Ni-B kaplama ve ısıl işlem başarılı bir şekilde uygulanmış olup, Zn-Al kaplamalara iyi bir alternatif oluşturmaktadır.

Etik Beyan

Bu makalede bilimsel araştırma ve yayın etiğine uyulmuştur. Yazarlar çalışmaya eşit oranda katkı sağlamıştır.

Teşekkür

Bu çalışma Mustafa DURSUNLAR’ın doktora tez çalışmalarından türetilmiş olup, malzeme temini ve kaplamalar için Gürmak Demiryolu ve Bematek’e teşekkür ederiz.

Kaynakça

  • [1] J. Liu, B. Jiang, C. Zhang, G. Li, Y. Dai, and L. Chen, “Evolution during hot rolling and control by thermomechanical control process of surface decarburization on 38Si7 spring steel,” Journal of Materials Engineering and Performance, vol. 31, no. 11, pp. 8677–8686, 2022, doi:10.1007/s11665-022-06956-5
  • [2] Y. Liu, X. Jiang, Q. Li, and H. Liu, “Failure analysis and fatigue life prediction of high-speed rail clips based on dic technique,” Advances in Mechanical Engineering, vol. 13, no. 12, 2021, doi: https://doi.org/10.1177/16878140211066225
  • [3] D. Ferreño, J. A. Casado, I. A. Carrascal, S. Diego, E. Ruiz, M. Saiz, J. A. Sainz-Aja, and A. I. Cimentada, “Experimental and finite element fatigue assessment of the spring clip of the SKL-1 railway fastening system,” Engineering Structures, vol. 188, pp. 553–563, 2019, doi: https://doi.org/10.1016/j.engstruct.2019.03.053
  • [4] M. Chen, W. Zhai, S. Zhu, L. Xu, and Y. Sun, “Vibration-based damage detection of rail fastener using fully convolutional networks,” Vehicle System Dynamics, vol. 60, no. 7, pp. 2191–2210, 2022, doi: 10.1080/00423114.2021.1896010
  • [5] Y. Lu, H. Xie, J. Wang, Z. Li, F. Jia, H. Wu, J. Han, and Z. Jiang, “Influence of hot compressive parameters on flow behavior and microstructure evolution in a commercial medium carbon micro-alloyed spring steel,” Journal of Manufacturing Processes, vol. 58, pp. 1171–1181, 2020, doi: https://doi.org/10.1016/j.jmapro.2020.09.021
  • [6] M. Sol-Sánchez, L. Pirozzolo, F. Moreno-Navarro, and M. C. Rubio-Gámez, “A study into the mechanical performance of different configurations for the railway track section: a laboratory approach,” Engineering Structures, vol. 119, pp. 13–23, 2016, doi: https://doi.org/10.1016/j.engstruct.2016.04.008
  • [7] W. Peng, J. Zhang, X. Yang, Z. Zhu, and S. Liu, “Failure analysis on the collapse of leaf spring steels during cold-punching,” Engineering Failure Analysis, vol. 17, no. 4, pp. 971–978, 2010, doi: https://doi.org/10.1016/j.engfailanal.2009.11.008
  • [8] C. Xu, Y. Liang, M. Yang, J. Yu, and X. Peng, “Effects of the ultrasonic assisted surface rolling process on the fatigue crack initiation position distribution and fatigue life of 51CrV4 spring steel,” Materials, Vol. 14, Page 2565, 2021, doi:10.3390/MA14102565
  • [9] C. L. Zhang, L. Y. Zhou, and Y. Z. Liu, “Surface decarburization characteristics and relation between decarburized types and heating temperature of spring steel 60Si2MnA,” International Journal of Minerals, Metallurgy and Materials, vol. 20, no. 8, pp. 720–724, 2013, doi:10.1007/s12613-013-0789-1
  • [10] D. Ma, J. Shi, Z. Yan, and L. Sun, “Failure analysis of fatigue damage for fastening clips in the ballastless track of high-speed railway considering random track irregularities,” Engineering Failure Analysis, vol. 131, no. 105897, 2022, doi:10.1007/s12613-013-0789-1
  • [11] H. Wang, F. Su, Z. Wen, and C. Li, “Effects of Mn and Si on the ferrite decarburization of spring steel,” Journal of Materials Research and Technology, vol. 27, pp. 363–371, 2023, doi: https://doi.org/10.1016/j.jmrt.2023.09.259
  • [12] N. Zhang, C. Fu, B. Jiang, L. Sun, and Y. Liu, “Failure analysis of fatigue fracture for 60Si2Mn steel fastening clip in the track of high-speed railway,” Engineering Failure Analysis, vol. 142, no. 106757, 2022, doi: https://doi.org/10.1016/j.engfailanal.2022.106757
  • [13] X. W. Wang, Q. F. Hu, C. L. Zhang, L. Chen, C. Y. Zhu, B. Tao, B. Jiang, and Y. Z. Liu, “Optimization of heat treatment for 38Si7 spring steel with excellent mechanical properties and controlled decarburization,” Materials, vol. 15, no. 11, 2022, doi:10.3390/ma15113763
  • [14] H. Kania, J. Mendala, J. Kozuba, and M. Saternus, “Development of bath chemical composition for batch hot-dip galvanizing—a review,” Materials, vol. 13, no. 18, pp. 4168, 2020, doi:10.3390/MA13184168
  • [15] M. Klekotka, K. Zielińska, A. Stankiewicz, and M. Kuciej, “Tribological and anticorrosion performance of electroplated zinc based nanocomposite coatings,” Coatings, vol. 10, no. 6, pp. 594, 2020, doi:10.3390/coatings10060594
  • [16] Q. Li, H. Lu, J. Cui, M. An, and D. Li, “Electrodeposition of nanocrystalline zinc on steel for enhanced resistance to corrosive wear,” Surface and Coatings Technology, vol. 304, pp. 567–573, 2016, doi: https://doi.org/10.1016/j.surfcoat.2016.07.056
  • [17] I. D. Utu, R. Muntean, and I. Mitelea, “Corrosion and wear properties of Zn-based composite coatings,” Journal of Materials Engineering and Performance, vol. 29 no. 8, pp. 5360–5365, 2020, doi: https://doi.org/10.1007/s11665-020-04995-4
  • [18] A. Mukhopadhyay, T. K. Barman, P. Sahoo, and J. P. Davim, “Comparative study of tribological behavior of electroless Ni–B, Ni–B–Mo, and Ni–B–W coatings at room and high temperatures,” Lubricants, vol. 6, no. 3, pp. 67, 2018, doi:10.1177/1350650118755781
  • [19] A. Brenner, and G. E. Riddell, “Nickel plating on steel by chemical reduction,” Journal of Research of the National Bureau of Standards, vol. 37, no. 1, pp. 31, 1946, doi:10.6028/jres.037.019
  • [20] V. Vitry, and L. Bonin, “Increase of boron content in electroless nickel-boron coating by modification of plating conditions,” Surface and Coatings Technology, vol. 311, pp. 164–171, 2017, doi: https://doi.org/10.1016/j.surfcoat.2017.01.009
  • [21] S. Pal, and V. Jayaram, “Effect of microstructure on the hardness and dry sliding behavior of electroless Ni–B coating”. Materialia, vol. 4, pp. 47–64, 2018, doi: https://doi.org/10.1016/j.mtla.2018.09.004
  • [22] P. Sahoo, and S. K. Das, “Tribology of electroless nickel coatings–a review,” Materials & Design, vol. 32, no. 4, pp. 1760–1775, 2011, doi: https://doi.org/10.1016/j.matdes.2010.11.013
  • [23] M. Yunacti, V. Vitry, A. Montagne, and M. H. Staia, “Replacing toxic hard chrome coatings: exploring the tribocorrosion behaviour of electroless nickel-boron coatings,” Coatings, vol. 13, no. 12, pp. 2046, 2023, doi:10.3390/coatings13122046
  • [24] V. Vitry, J. Hastir, A. Mégret, S. Yazdani, M. Yunacti, and L. Bonin, “Recent advances in electroless nickel boron coatings,” Surface and Coatings Technology, vol. 429, no. 127937, 2022, doi: https://doi.org/10.1016/j.surfcoat.2021.127937
  • [25] V. Vitry, A. F. Kanta, and F. Delaunois, “Mechanical and wear characterization of electroless nickel-boron coatings,” Surface and Coatings Technology, vol. 206, no. 7, pp. 1879–1885, 2011, doi: https://doi.org/10.1016/j.surfcoat.2016.10.021
  • [26] L. Bonin, and V. Vitry, “Mechanical and wear characterization of electroless nickel mono and bilayers and high boron-mid phosphorus electroless nickel duplex coatings,” Surface and Coatings Technology, vol. 307, pp. 957–962, 2016, doi: https://doi.org/10.1016/j.surfcoat.2016.10.021
  • [27] V. Vitry, and F. Delaunois, “Nanostructured electroless nickel-boron coatings for wear resistance,” Anti-Abrasive Nanocoatings: Current and Future Applications, pp. 157–199, 2015, doi: https://doi.org/10.1016/B978-0-85709-211-3.00007-8
  • [28] K. Krishnaveni, T. S. N. Sankara Narayanan, and S. K. Seshadri, “Electroless Ni–B coatings: preparation and evaluation of hardness and wear resistance,” Surface and Coatings Technology, vol. 190, no. 1, pp. 115–121, 2005, doi: https://doi.org/10.1016/j.surfcoat.2004.01.038
  • [29] R. Tima, and F. Mahboubi, “Effect of plasma nitriding temperature on microstructure and wear properties of electroless nickel-boron coatings,” Surface and Coatings Technology, vol. 415, no. 127084, 2021, doi: https://doi.org/10.1016/j.surfcoat.2021.127084
  • [30] F. Bülbül, H. Altun, V. Ezirmik, and Ö. Küçük, “Investigation of structural, tribological and corrosion properties of electroless Ni–B coating deposited on 316L stainless steel,” Journal of Engineering Tribology, vol. 227, no. 6, pp. 629-639, 2012, doi:10.1177/1350650112464928
  • [31] E. Correa, A. A. Zuleta, L. Guerra, M. A. Gómez, J. G. Castaño, F. Echeverría, H. Liu, P. Skeldon, and G. E. Thompson, “Tribological behavior of electroless Ni–B coatings on magnesium and AZ91D alloy,” Wear, vol. 305, no. 1–2, pp. 115–123, 2013, doi: https://doi.org/10.1016/j.wear.2013.06.004
  • [32] F. Madah, C. Dehghanian, and A. A. Amadeh, “Investigations on the wear mechanisms of electroless Ni–B coating during dry sliding and endurance life of the worn surfaces,” Surface and Coatings Technology, vol. 282, pp. 6–15, 2015, doi: https://doi.org/10.1016/j.surfcoat.2015.09.003
  • [33] J. N. Balaraju, A. Priyadarshi, V. Kumar, N. T. Manikandanath, P. P. Kumar, and B. Ravisankar, “Hardness and wear behaviour of electroless Ni–B coatings,” Materials Science and Technology, vol. 32, no.16, pp. 1654–1665, 2016, doi:10.1080/02670836.2015.1137683
  • [34] A. Mukhopadhyay, T. K. Barman, and P. Sahoo, “Effect of operating temperature on tribological behavior of as-plated Ni-B coating deposited by electroless method,” Tribology Transactions, vol. 61, no. 1, pp. 41–52, 2018, doi:10.1080/10402004.2016.1271929
  • [35] D. Gültekin, E. Duru, and H. Akbulut, “Improved wear behaviors of lead-free electroless NiB and Ni-B/CeO2 composite coatings,” Surface and Coatings Technology, vol. 422, no. 127525, 2021, doi: https://doi.org/10.1016/j.surfcoat.2021.127525
  • [36] A. Bayatlı, E. F. Şahin, and M. Kocabaş, “Effect of boron carbide reinforcement on surface properties of electroless Ni–B and Ni–B–W coatings,” Materials Chemistry and Physics, vol. 305, no. 127899, 2023, doi: https://doi.org/10.1016/j.matchemphys.2023.127899
  • [37] R. Agrawal, L. Gupta, S. Jain, R. Sharma, and A. Mukhopadhyay, “Electroless Ni–B coating formed from a stabilizer-free double bath,” Transactions of the Indian Institute of Metals, vol. 77, no. 4, pp. 1039-1051, 2024, doi: https://doi.org/10.1007/s12666-023-03220-9
  • [38] H. Çuğ ve M. Dursunlar, “Termit ve yakma alın kaynağı ile birleştirilmiş R260 kalite rayın mikroyapı ve mekanik özelliklerinin incelenmesi”, Demiryolu Mühendisliği, sy. 14, ss. 167–179, Temmuz 2021, doi: 10.47072/demiryolu.944266
Toplam 38 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Malzeme Tasarım ve Davranışları
Bölüm Bilimsel Yayınlar (Hakemli Araştırma ve Derleme Makaleler)
Yazarlar

Mustafa Dursunlar 0000-0003-4278-2744

Zakir Taş 0009-0000-0876-0547

Yayımlanma Tarihi 31 Temmuz 2024
Gönderilme Tarihi 19 Nisan 2024
Kabul Tarihi 20 Mayıs 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

IEEE M. Dursunlar ve Z. Taş, “Ray Bağlantı Elemanlarına Akımsız Ni-B Kaplama ve Isıl İşlem Uygulamaları”, Demiryolu Mühendisliği, sy. 20, ss. 67–78, Temmuz 2024, doi: 10.47072/demiryolu.1471045.