Araştırma Makalesi
BibTex RIS Kaynak Göster

Tekerlek Ray Etkileşimi, Perlitik ve Beynitik Çeliklerin Yorulma Hasar Direnci Üzerine Bir Sonlu Elemanlar Analizi

Yıl 2021, , 65 - 76, 31.07.2021
https://doi.org/10.47072/demiryolu.934471

Öz

Bu çalışmada ülkemizde ve dünyada demiryolu hatlarında işletme şartlarında çoğunlukla kullanımda olan perlitik mikroyapıdaki çelikler ve perlitik çeliklere alternatif olarak sunulan, gelişmiş mekanik özelliklere sahip olan beynitik mikroyapıdaki çelikler ele alınmıştır. Geniş bir literatür özetiyle konvansiyonel ray sınıfları ve gelişmiş ray sınıfları, kimyasal kompozisyonları ve temel mekanik özellikleri dikkate alınarak değerlendirilmiştir. Ayrıca dünyada farklı bölge ve ülkelerde geliştirilen beynitik ray çelikleri incelenmiştir. Daha sonra tekerlek ray etkileşimi, sürtünme şartları ve temas yüzeyleri dikkate alınarak, geliştirilen sonlu elemanlar modelinde rayın yorulma hasar direnci analiz edilmiştir. Sonuç olarak analiz edilen beynitik mikroyapıdaki çeliğin yorulma hasar direncinin perlitik mikroyapıya göre üstün olduğu ve 386,69 MPa yük altında on milyon çevrime dayanabildiği anlaşılmıştır.

Destekleyen Kurum

-

Proje Numarası

-

Teşekkür

-

Kaynakça

  • H. Tehrani and M. Saket, “Fatigue crack initiation life prediction of railroad,” in 7th International Conference on Modern Practice in Stress and Vibration Analysis, 2009, pp. 1-8.
  • R. Masoudi Nejad, K. Farhangdoost, and M. Shariati, “Microstructural analysis and fatigue fracture behavior of rail steel,” Mech. Adv. Mater. Struct., vol. 27, no. 2, pp. 152-164, 2018, doi: 10.1080/15376494.2018.1472339.
  • O. Akbayır, “Dünya’da ve Türkiye’de demiryolu kazaları nedeniyle meydana gelen ölüm oranlarının karşılaştırılması,” Demiryolu Mühendisliği, vol. 5, pp. 45-52, 2017.
  • R. Heyder and G. Girsch, “Advanced pearlitic and bainitic high strength rails promise to improve rolling contact fatigue resistance,” in 7th World Congress on Railway Research, 2006, no. August, p. 234.
  • A. Moser and P. Pointner, “Head-hardened rails produced from rolling heat,” Transp. Res. Rec., no. 1341, pp. 70-74, 1992.
  • K. F. Rodriguez-galeano, R. Rodriguez-baracaldo, A. Mestra-rodriguez, J. M. Cabrera-marrero, and J. J. Olaya-florez, “Influence of boron content on the fracture toughness and fatigue crack propagation kinetics of bainitic steels,” Theor. Appl. Fract. Mech., vol. 86, pp. 351-360, 2016, doi: 10.1016/j.tafmec.2016.09.010.
  • I. Hlavaty, M. Sigmund, L. Krejci, and P. Mohyla, “The Bainitic steels for rails applications,” Mater. Eng., vol. 16, no. 4, pp. 44-50, 2009, [Online]. Available: https://core.ac.uk/download/pdf/26746837.pdf.
  • K. M. Lee and A. A. Polycarpou, “Wear of conventional pearlitic and improved bainitic rail steels,” Wear, vol. 259, no. 1-6, pp. 391-399, 2005, doi: 10.1016/j.wear.2005.02.058.
  • N. Jin and P. Clayton, “Effect of microstructure on rolling/sliding wear of low carbon bainitic steels,” Wear, vol. 202, pp. 202-207, 1997.
  • S. Hasan, D. Chakrabarti, and S. B. Singh, “Dry rolling / sliding wear behaviour of pearlitic rail and newly developed carbide-free bainitic rail steels,” Wear, vol. 408-409, no. February, pp. 151-159, 2018, doi: 10.1016/j.wear.2018.05.006.
  • K. Morton, D. F. Cannon, P. Clayton, and E. G. Jones, “The assessment of rail steels,” in Rail Steels: Developments, Processing and Use, ASTM STP 644, ASTM, 1978.
  • C. C. Viafara, M. I. Castro, J. Velez, and A. Toro, “Unlubricated sliding wear of pearlitic and bainitic steels,” Wear, vol. 259, pp. 405-411, 2005, doi: 10.1016/j.wear.2005.02.013.
  • L. C. Chang, “The rolling/sliding wear performance of high silicon carbide-free bainitic steels,” Wear, vol. 258, no. 5-6, pp. 730-743, 2005, doi: 10.1016/j.wear.2004.09.064.
  • U. P. Singh, B. Roy, S. Jha, and S. K. Bhattacharyya, “Microstructure and mechanical properties of as rolled high strength bainitic rail steels,” Mater. Sci. Technol., vol. 17, no. January, pp. 33-38, 2001.
  • H. Yokoyama, S. Mitao, S. Yamamoto, Y. Kataoka, and Toru Sugiyama, “High strength bainitic steel rails for heavy haul railways with superior damage resistance,” NKK Tech. Rev., vol. 84, pp. 44-51, 2001.
  • H. A. Aglan, Z. Y. Liu, M. F. Hassan, and M. Fateh, “Mechanical and fracture behavior of bainitic rail steel,” J. Mater. Process. Technol., vol. 151, no. 1-3 SPEC. ISS., pp. 268-274, 2004, doi: 10.1016/j.jmatprotec.2004.04.073.
  • X. Gui, K. Wang, G. Gao, R. D. K. Misra, Z. Tan, and B. Bai, “Rolling contact fatigue of bainitic rail steels: The significance of microstructure,” Mater. Sci. Eng. A, vol. 657, pp. 82-85, 2016, doi: 10.1016/j.msea.2016.01.052.
  • I. Hlavaty, M. Sigmund, K. Lucie, and P. Mohyla, “The Bainitic steels for rails applications,” Mater. Eng., vol. 16, no. 4, pp. 44-50, 2009.
  • R. Heyder and G. Girsch, “Testing of HSH rails in high-speed tracks to minimise rail damage,” Wear, vol. 258, no. 7-8, pp. 1014-1021, 2005, doi: 10.1016/j.wear.2004.03.050.
  • K. Sawley and J. Kristan, “Development of bainitic rail steels with potential resistance to rolling contact fatigue,” Fatigue Fract. Eng. Mater. Struct., vol. 26, no. 10, pp. 1019-1029, 2003, doi: 10.1046/j.1460-2695.2003.00671.x.
  • TCDD, “TCDD National High Speed Train Project 2017,” 2017.
  • Y. Li, F. Zhang, C. Chen, B. Lv, Z. Yang, and C. Zheng, “Effects of deformation on the microstructures and mechanical properties of carbide-free bainitic steel for railway crossing and its hydrogen embrittlement characteristics,” Mater. Sci. Eng. A, vol. 651, pp. 945-950, 2016, doi: 10.1016/j.msea.2015.09.117.
  • F. C. Zhang, C. L. Zheng, B. Lv, T. S. Wang, M. Li, and M. Zhang, “Effects of hydrogen on the properties of bainitic steel crossing,” Eng. Fail. Anal., vol. 16, no. 5, pp. 1461-1467, 2009, doi: 10.1016/j.engfailanal.2008.09.019.
  • M. Haddad, Y. Ivanisenko, E. Courtois-manara, and H. Fecht, “In-situ tensile test of high strength nanocrystalline bainitic steel,” Mater. Sci. Eng. A, vol. 620, pp. 30-35, 2015, doi: 10.1016/j.msea.2014.09.088.
  • P. Clayton, K. J. Sawley, P. J. Bolton, and G. M. Pell, “Wear behaviour of bainitic steels,” Wear, vol. 120, no. 1987, pp. 199-220, 1987.
  • D. Szablewski, S. Kalay, and J. Lopresti, “Development and evaluation of high performance Rail Steels for Heavy Haul Operations,” in 9th World Congress on Railway Research (WCRR), 2011, pp. 1-10.
  • TCDD, TCDD Hat Bakım El Kitabı - Üstyapı, Bölüm 1. Ankara: TCDD, 2013.
  • EN 13674-1, “Railway applications - Track - Rail - Part 1: Vignole railway rails 46 kg/m and above applications,” 2013.
  • M. Shahraki, C. Warnakulasooriya, and K. J. Witt, “Numerical study of transition zone between ballasted and ballastless railway track,” Transp. Geotech., vol. 3, pp. 58-67, 2015, doi: 10.1016/j.trgeo.2015.05.001.
  • A. Paixao, J. N. Varandas, E. Fortunato, and R. Calcada, “Numerical simulations to improve the use of under sleeper pads at transition zones to railway bridges,” Eng. Struct., vol. 164, no. September 2017, pp. 169-182, 2018, doi: 10.1016/j.engstruct.2018.03.005.
  • A. Ghidini, M. Diener, A. Gianni, and J. Schneider, Innovative steel by Lucchini RS for high-speed wheel application.
  • L. Boussalia and A. Bellaouar, “Numerical simulation of the tread defects’ form impact on the eigen frequencies of a railway wheel,” UPB Sci. Bull. Ser. D Mech. Eng., vol. 80, no. 2, pp. 63-74, 2018.
  • P. Clayton and X. Su, “Surface initiated fatigue of pearlitic and bainitic steels under water lubricated rolling/sliding contact,” Wear, vol. 200, no. 1-2, pp. 63-73, 1996, doi: 10.1016/S0043-1648(96)07250-X.
  • J. Srivastava, P. Sarkar, and V. Ranjan, “Contact stress analysis in wheel-rail by Hertzian method and finite element method,” no. October, 2014, doi: 10.1007/s40032-014-0145-x.
  • Y. Ozdemir, “Ray-Tekerlek temasında temas parametrelerinin incelenmesi,” Demiryolu Mühendisliği, no. 11, pp. 1-13, 2020.
  • M. R. Khan and S. M. Dasaka, “Variation of effective frictional coefficient at wheel-rail contact interfaces during high speed railway operations,” IOP Conf. Ser. Mater. Sci. Eng., vol. 377, no. 1, 2018, doi: 10.1088/1757-899X/377/1/012001.
  • Y. Sarikavak, “Demiryollarında ön germeli traverslerin farklı işletme yükleri altında mekanik analizi,” Demiryolu Mühendisliği, no. 13, pp. 115-121, 2021, doi: 10.47072/demiryolu.832641.
  • A. Paixao, C. Alves Ribeiro, N. Pinto, E. Fortunato, and R. Calcada, “On the use of under sleeper pads in transition zones at railway underpasses: experimental field testing,” Structure and Infrastructure Engineering, vol. 11, no. 2. Taylor & Francis, pp. 112-128, 2015, doi: 10.1080/15732479.2013.850730.

Wheel Rail Interaction and a Finite Element Analysis on Fatigue Failure Resistance of Pearlitic and Bainitic Steels

Yıl 2021, , 65 - 76, 31.07.2021
https://doi.org/10.47072/demiryolu.934471

Öz

In this study, pearlitic microstructure steels, which are frequently used in the operational conditions of railways, and alternatively developed, bainitic microstructure steels, that has advanced mechanical properties are investigated. Conventional and advanced rail grades were investigated in terms of chemical composition and mechanical properties with an extended literature review. In addition, bainitic rail steels developed in different regions and countries were analyzed. Fatigue failure resistance of rails were analyzed with finite element method considering wheel-rail interaction, friction parameters and contact regions. In conclusion, analyzed bainitic microstructure shows advanced fatigue characteristics than pearlitic microstructure with ten million cycle resistance under 386.9 MPa load.

Proje Numarası

-

Kaynakça

  • H. Tehrani and M. Saket, “Fatigue crack initiation life prediction of railroad,” in 7th International Conference on Modern Practice in Stress and Vibration Analysis, 2009, pp. 1-8.
  • R. Masoudi Nejad, K. Farhangdoost, and M. Shariati, “Microstructural analysis and fatigue fracture behavior of rail steel,” Mech. Adv. Mater. Struct., vol. 27, no. 2, pp. 152-164, 2018, doi: 10.1080/15376494.2018.1472339.
  • O. Akbayır, “Dünya’da ve Türkiye’de demiryolu kazaları nedeniyle meydana gelen ölüm oranlarının karşılaştırılması,” Demiryolu Mühendisliği, vol. 5, pp. 45-52, 2017.
  • R. Heyder and G. Girsch, “Advanced pearlitic and bainitic high strength rails promise to improve rolling contact fatigue resistance,” in 7th World Congress on Railway Research, 2006, no. August, p. 234.
  • A. Moser and P. Pointner, “Head-hardened rails produced from rolling heat,” Transp. Res. Rec., no. 1341, pp. 70-74, 1992.
  • K. F. Rodriguez-galeano, R. Rodriguez-baracaldo, A. Mestra-rodriguez, J. M. Cabrera-marrero, and J. J. Olaya-florez, “Influence of boron content on the fracture toughness and fatigue crack propagation kinetics of bainitic steels,” Theor. Appl. Fract. Mech., vol. 86, pp. 351-360, 2016, doi: 10.1016/j.tafmec.2016.09.010.
  • I. Hlavaty, M. Sigmund, L. Krejci, and P. Mohyla, “The Bainitic steels for rails applications,” Mater. Eng., vol. 16, no. 4, pp. 44-50, 2009, [Online]. Available: https://core.ac.uk/download/pdf/26746837.pdf.
  • K. M. Lee and A. A. Polycarpou, “Wear of conventional pearlitic and improved bainitic rail steels,” Wear, vol. 259, no. 1-6, pp. 391-399, 2005, doi: 10.1016/j.wear.2005.02.058.
  • N. Jin and P. Clayton, “Effect of microstructure on rolling/sliding wear of low carbon bainitic steels,” Wear, vol. 202, pp. 202-207, 1997.
  • S. Hasan, D. Chakrabarti, and S. B. Singh, “Dry rolling / sliding wear behaviour of pearlitic rail and newly developed carbide-free bainitic rail steels,” Wear, vol. 408-409, no. February, pp. 151-159, 2018, doi: 10.1016/j.wear.2018.05.006.
  • K. Morton, D. F. Cannon, P. Clayton, and E. G. Jones, “The assessment of rail steels,” in Rail Steels: Developments, Processing and Use, ASTM STP 644, ASTM, 1978.
  • C. C. Viafara, M. I. Castro, J. Velez, and A. Toro, “Unlubricated sliding wear of pearlitic and bainitic steels,” Wear, vol. 259, pp. 405-411, 2005, doi: 10.1016/j.wear.2005.02.013.
  • L. C. Chang, “The rolling/sliding wear performance of high silicon carbide-free bainitic steels,” Wear, vol. 258, no. 5-6, pp. 730-743, 2005, doi: 10.1016/j.wear.2004.09.064.
  • U. P. Singh, B. Roy, S. Jha, and S. K. Bhattacharyya, “Microstructure and mechanical properties of as rolled high strength bainitic rail steels,” Mater. Sci. Technol., vol. 17, no. January, pp. 33-38, 2001.
  • H. Yokoyama, S. Mitao, S. Yamamoto, Y. Kataoka, and Toru Sugiyama, “High strength bainitic steel rails for heavy haul railways with superior damage resistance,” NKK Tech. Rev., vol. 84, pp. 44-51, 2001.
  • H. A. Aglan, Z. Y. Liu, M. F. Hassan, and M. Fateh, “Mechanical and fracture behavior of bainitic rail steel,” J. Mater. Process. Technol., vol. 151, no. 1-3 SPEC. ISS., pp. 268-274, 2004, doi: 10.1016/j.jmatprotec.2004.04.073.
  • X. Gui, K. Wang, G. Gao, R. D. K. Misra, Z. Tan, and B. Bai, “Rolling contact fatigue of bainitic rail steels: The significance of microstructure,” Mater. Sci. Eng. A, vol. 657, pp. 82-85, 2016, doi: 10.1016/j.msea.2016.01.052.
  • I. Hlavaty, M. Sigmund, K. Lucie, and P. Mohyla, “The Bainitic steels for rails applications,” Mater. Eng., vol. 16, no. 4, pp. 44-50, 2009.
  • R. Heyder and G. Girsch, “Testing of HSH rails in high-speed tracks to minimise rail damage,” Wear, vol. 258, no. 7-8, pp. 1014-1021, 2005, doi: 10.1016/j.wear.2004.03.050.
  • K. Sawley and J. Kristan, “Development of bainitic rail steels with potential resistance to rolling contact fatigue,” Fatigue Fract. Eng. Mater. Struct., vol. 26, no. 10, pp. 1019-1029, 2003, doi: 10.1046/j.1460-2695.2003.00671.x.
  • TCDD, “TCDD National High Speed Train Project 2017,” 2017.
  • Y. Li, F. Zhang, C. Chen, B. Lv, Z. Yang, and C. Zheng, “Effects of deformation on the microstructures and mechanical properties of carbide-free bainitic steel for railway crossing and its hydrogen embrittlement characteristics,” Mater. Sci. Eng. A, vol. 651, pp. 945-950, 2016, doi: 10.1016/j.msea.2015.09.117.
  • F. C. Zhang, C. L. Zheng, B. Lv, T. S. Wang, M. Li, and M. Zhang, “Effects of hydrogen on the properties of bainitic steel crossing,” Eng. Fail. Anal., vol. 16, no. 5, pp. 1461-1467, 2009, doi: 10.1016/j.engfailanal.2008.09.019.
  • M. Haddad, Y. Ivanisenko, E. Courtois-manara, and H. Fecht, “In-situ tensile test of high strength nanocrystalline bainitic steel,” Mater. Sci. Eng. A, vol. 620, pp. 30-35, 2015, doi: 10.1016/j.msea.2014.09.088.
  • P. Clayton, K. J. Sawley, P. J. Bolton, and G. M. Pell, “Wear behaviour of bainitic steels,” Wear, vol. 120, no. 1987, pp. 199-220, 1987.
  • D. Szablewski, S. Kalay, and J. Lopresti, “Development and evaluation of high performance Rail Steels for Heavy Haul Operations,” in 9th World Congress on Railway Research (WCRR), 2011, pp. 1-10.
  • TCDD, TCDD Hat Bakım El Kitabı - Üstyapı, Bölüm 1. Ankara: TCDD, 2013.
  • EN 13674-1, “Railway applications - Track - Rail - Part 1: Vignole railway rails 46 kg/m and above applications,” 2013.
  • M. Shahraki, C. Warnakulasooriya, and K. J. Witt, “Numerical study of transition zone between ballasted and ballastless railway track,” Transp. Geotech., vol. 3, pp. 58-67, 2015, doi: 10.1016/j.trgeo.2015.05.001.
  • A. Paixao, J. N. Varandas, E. Fortunato, and R. Calcada, “Numerical simulations to improve the use of under sleeper pads at transition zones to railway bridges,” Eng. Struct., vol. 164, no. September 2017, pp. 169-182, 2018, doi: 10.1016/j.engstruct.2018.03.005.
  • A. Ghidini, M. Diener, A. Gianni, and J. Schneider, Innovative steel by Lucchini RS for high-speed wheel application.
  • L. Boussalia and A. Bellaouar, “Numerical simulation of the tread defects’ form impact on the eigen frequencies of a railway wheel,” UPB Sci. Bull. Ser. D Mech. Eng., vol. 80, no. 2, pp. 63-74, 2018.
  • P. Clayton and X. Su, “Surface initiated fatigue of pearlitic and bainitic steels under water lubricated rolling/sliding contact,” Wear, vol. 200, no. 1-2, pp. 63-73, 1996, doi: 10.1016/S0043-1648(96)07250-X.
  • J. Srivastava, P. Sarkar, and V. Ranjan, “Contact stress analysis in wheel-rail by Hertzian method and finite element method,” no. October, 2014, doi: 10.1007/s40032-014-0145-x.
  • Y. Ozdemir, “Ray-Tekerlek temasında temas parametrelerinin incelenmesi,” Demiryolu Mühendisliği, no. 11, pp. 1-13, 2020.
  • M. R. Khan and S. M. Dasaka, “Variation of effective frictional coefficient at wheel-rail contact interfaces during high speed railway operations,” IOP Conf. Ser. Mater. Sci. Eng., vol. 377, no. 1, 2018, doi: 10.1088/1757-899X/377/1/012001.
  • Y. Sarikavak, “Demiryollarında ön germeli traverslerin farklı işletme yükleri altında mekanik analizi,” Demiryolu Mühendisliği, no. 13, pp. 115-121, 2021, doi: 10.47072/demiryolu.832641.
  • A. Paixao, C. Alves Ribeiro, N. Pinto, E. Fortunato, and R. Calcada, “On the use of under sleeper pads in transition zones at railway underpasses: experimental field testing,” Structure and Infrastructure Engineering, vol. 11, no. 2. Taylor & Francis, pp. 112-128, 2015, doi: 10.1080/15732479.2013.850730.
Toplam 38 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Makine Mühendisliği
Bölüm Bilimsel Yayınlar (Hakemli Araştırma ve Derleme Makaleler)
Yazarlar

Yasin Sarıkavak 0000-0002-3573-6179

Proje Numarası -
Yayımlanma Tarihi 31 Temmuz 2021
Gönderilme Tarihi 7 Mayıs 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

IEEE Y. Sarıkavak, “Tekerlek Ray Etkileşimi, Perlitik ve Beynitik Çeliklerin Yorulma Hasar Direnci Üzerine Bir Sonlu Elemanlar Analizi”, Demiryolu Mühendisliği, sy. 14, ss. 65–76, Temmuz 2021, doi: 10.47072/demiryolu.934471.