Araştırma Makalesi
BibTex RIS Kaynak Göster

Demiryolu Havai Hatlarında Pantograf Kuvveti ve Seyir Teli Gerilimi İlişkisinin Sonlu Elemanlar Yöntemi ile İncelenmesi

Yıl 2023, Sayı: 18, 98 - 108, 31.07.2023
https://doi.org/10.47072/demiryolu.1295172

Öz

Demiryolu havai hat elektrifikasyonu pantograf cihazı ile katener hatlara sürekli olarak enerji sağlamaktadır. Pantograf ve seyir teli etkileşimi, havai hat dinamiklerinin incelenmesinde önemli bir rol oynamaktadır. Havai hat bileşenleri yüksek hızda seyreden trenler nedeniyle dalgalı temas kuvvetlerine maruz kalırlar. Bu sebeple kontak teli/pantograf etkileşimi kontak tellerinin ve pantograf karbon çubuklarının çalışma ömrünün tahmin edilmesinde önem arzetmektedir. Bu çalışma, Avrupa'da kullanılan bir dizi standart havai hat tasarımında, Series 1, Sicat S1.0, Sicat H1.0, Re250 ve EAC 350, temas kuvveti ve seyir teli gerilim/gerinim ilişkisini sonlu elemanlar yöntemiyle incelemektedir. Elde edilen sonuçlar ön gerilim, hat uzunluğu, temas teli malzemesinin çeşidi ve gerilim-temas kuvveti arasında bir ilişki kurmaktadır. Pantograf temas kuvvetinin seyir telinde oluşturduğu eğilme etkisini anlamak, ana hatlardaki potansiyel arızaların önceden tahmin edilmesine katkıda bulunacak ve çeşitli havai hat tasarım parametrelerinin güvenilirliğinin belirlenmesinde önemli bir rol oynayacaktır.

Kaynakça

  • [1] ‘EN 50206-1:2010 Railway applications - Rolling stock - Pantographs : Characteristics and tests - Part 1 : Pantographs for main line vehicles’. 2010.
  • [2] BSI, ‘BS EN 50317: Railway applications - Current collection systems - Requirements for and validation of measurements of the dynamic interaction between pantograph and overhead contact line’, p. 20, 2012.
  • [3] BSI, ‘BS EN 50318 : Railway applications - Current collection systems - Validation of simulation of the dynamic interaction between pantograph and overhead contact line’, vol. 3, p. 20, 2012.
  • [4] BS EN 50367-Railway applications - Current collection systems - Technical criteria for the interaction between pantograph and overhead line
  • [5] J. W., S. Longhurst, and C. A. Brebbia, Urban Transport and the Environment in the 21st Century. WIT Press, 2012. Accessed: Jan. 18, 2022. [Online]. Available: https://www.witpress.com/books/978-1-84564-580-9
  • [6] S. Lee and Y. H. Cho, ‘Development of bending fatigue test system for trolley line simulating real conditions’, in Proceedings of the KSR Conference, The Korean Society for Railway, 2011, pp. 3059–3064.
  • [7] J. P. Bianchi, E. Balmes, and M.-L. N guyen-Tajan, ‘Dynamic stress prediction in catenary wires for fatigue analysis’, The Dynamics of Vehicles on Roads and Tracks - Proceedings of the 24th Symposium of the International Association for Vehicle System Dynamics, IAVSD 2015, no. October, 2016, doi: 10.1201/b21185-160.
  • [8] L. Chen, P. Peng, and F. He, ‘Fatigue life analysis of dropper used in pantograph-catenary system of high-speed railway’, Advances in Mechanical Engineering, vol. 10, no. 5, May 2018, doi: 10.1177/1687814018776135.
  • [9] D. Anastasio, A. Fasana, L. Garibaldi, and S. Marchesiello, ‘Analytical investigation of railway overhead contact wire dynamics and comparison with experimental results’, Mechanical Systems and Signal Processing, vol. 116, pp. 277–292, Feb. 2019, doi: 10.1016/j.ymssp.2018.06.021.
  • [10] O. Sunar and D. Fletcher, ‘Experimental Investigation on the Arc Damage and Fatigue Crack Initiation Risk of Copper-Silver Contact Wires’, IEEE Transactions on Power Delivery, pp. 1–8, 2022, doi: 10.1109/TPWRD.2022.3198734.
  • [11] Z. Wenxuan, M. Meijun, W. Jing, and W. Haiying, ‘Research on Contact Wire Uplift of Typical High-speed Railway at 300km/h and 350km/h’, in 2021 IEEE 2nd China International Youth Conference on Electrical Engineering (CIYCEE), Chengdu, China: IEEE, Dec. 2021, pp. 1–6. doi: 10.1109/CIYCEE53554.2021.9676903.
  • [12] S. Gregori, M. Tur, E. Nadal, and F. J. Fuenmayor, ‘An approach to geometric optimisation of railway catenaries’, Vehicle System Dynamics, vol. 56, no. 8, pp. 1162–1186, Aug. 2018, doi: 10.1080/00423114.2017.1407434.
  • [13] Y. Kim et al., ‘Fatigue life prediction method for contact wire using maximum local stress’, Journal of Mechanical Science and Technology, vol. 29, no. 1, pp. 67–70, Jan. 2015, doi: 10.1007/s12206-014-1210-3.
  • [14] Z. Guo et al., ‘Fatigue life estimation of cold drawn contact wire’, International Journal of Precision Engineering and Manufacturing, vol. 15, no. 11, pp. 2291–2299, Nov. 2014, doi: 10.1007/s12541-014-0593-5.
  • [15] S. H. Kim, R. H. Bae, and J. D. Kwon, ‘Bending fatigue characteristics of wire rope’, Journal of Mechanical Science and Technology, vol. 26, no. 7, pp. 2107–2110, Jul. 2012, doi: 10.1007/s12206-012-0524-2.
  • [16] J. P. Massat, T. M. L. Nguyen-Tajan, H. Maitournam, E. Balmès, A. Bobillot, and J.-P. Massat, ‘Fatigue analysis of catenary contact wires for high speed trains’, in 9th Word Congress on Railway Research WCRR, Lille,France: 9th Word Congress on Railway Research WCRR, 2011.
  • [17] J. Kohlhaas, ‘Interoperable overhead contact line SICAT H1.0 for high-speed line Cologne-Rhine/Main; Interoperable Oberleitung SICAT H1.0 der Schnellfahrstrecke Koeln-Rhein/Main’, Elektrische Bahnen - EB, vol. 100, no. 7, pp. 249–257, 2002.
  • [18] T. Popa, L. Anghel, B. Cernat, R. Hrin, and D. Buretea, ‘Collaborative project H2020-MG-2015-2015 GA-636237’.
  • [19] Furrer+Frey, ‘Series 1 The Great Western Railway Electrification Project Technical Report’, Bern, 2014.
  • [20] F. Kiessling, P. Rainer, A. Schmieder, and S. E, Contact Lines for Electric Railways. Siemens, 2009.
  • [21] G. Zhen et al., ‘Bending fatigue life evaluation of Cu-Mg alloy contact wire’, International Journal of Precision Engineering and Manufacturing, vol. 15, no. 7, pp. 1331–1335, 2014, doi: 10.1007/s12541-014-0473-z.
  • [22] O. Sunar, ‘Arc Damage Identification and Its Effects on Fatigue Life of Contact Wires in Railway Overhead Lines (PhD Thesis)’, The University of Sheffield http://etheses.whiterose.ac.uk/28205/ ISNI:0000 0004 9356 9895, 2021. [Online]. Available: http://etheses.whiterose.ac.uk/28205/

Investigation of Contact Force and Stress Relationship in Overhead Line Contact Wires with Finite Element Method

Yıl 2023, Sayı: 18, 98 - 108, 31.07.2023
https://doi.org/10.47072/demiryolu.1295172

Öz

Railway overhead line electrification (OLE) is used for providing continuous power to the trains throughout catenary wires and the current collector device of the pantograph. The interaction of contact force exerted by the pantograph and contact wire is an important topic in regulating OLE dynamics. OLE components are subjected to fluctuating contact forces due to the trains running with high speed, therefore, it is important to estimate service life of contact wires and pantograph carbon collectors by considering contact wire/pantograph interference. This study performs a number of contact force and stress/strain analysis of standard OLE designs used in Europe, Series 1, Sicat S1.0, Sicat H1.0, Re250 and EAC 350, with finite element method. The results establish a link between stress levels and contact force in the contact lines depending on the design parameters of contact wire type, pretension, span-length, and contact wire material. Understanding the bending of the contact wire due to the contact force will help to predict potential failures in mainlines and extend our knowledge of safety and reliability of various OLE design parameters.

Kaynakça

  • [1] ‘EN 50206-1:2010 Railway applications - Rolling stock - Pantographs : Characteristics and tests - Part 1 : Pantographs for main line vehicles’. 2010.
  • [2] BSI, ‘BS EN 50317: Railway applications - Current collection systems - Requirements for and validation of measurements of the dynamic interaction between pantograph and overhead contact line’, p. 20, 2012.
  • [3] BSI, ‘BS EN 50318 : Railway applications - Current collection systems - Validation of simulation of the dynamic interaction between pantograph and overhead contact line’, vol. 3, p. 20, 2012.
  • [4] BS EN 50367-Railway applications - Current collection systems - Technical criteria for the interaction between pantograph and overhead line
  • [5] J. W., S. Longhurst, and C. A. Brebbia, Urban Transport and the Environment in the 21st Century. WIT Press, 2012. Accessed: Jan. 18, 2022. [Online]. Available: https://www.witpress.com/books/978-1-84564-580-9
  • [6] S. Lee and Y. H. Cho, ‘Development of bending fatigue test system for trolley line simulating real conditions’, in Proceedings of the KSR Conference, The Korean Society for Railway, 2011, pp. 3059–3064.
  • [7] J. P. Bianchi, E. Balmes, and M.-L. N guyen-Tajan, ‘Dynamic stress prediction in catenary wires for fatigue analysis’, The Dynamics of Vehicles on Roads and Tracks - Proceedings of the 24th Symposium of the International Association for Vehicle System Dynamics, IAVSD 2015, no. October, 2016, doi: 10.1201/b21185-160.
  • [8] L. Chen, P. Peng, and F. He, ‘Fatigue life analysis of dropper used in pantograph-catenary system of high-speed railway’, Advances in Mechanical Engineering, vol. 10, no. 5, May 2018, doi: 10.1177/1687814018776135.
  • [9] D. Anastasio, A. Fasana, L. Garibaldi, and S. Marchesiello, ‘Analytical investigation of railway overhead contact wire dynamics and comparison with experimental results’, Mechanical Systems and Signal Processing, vol. 116, pp. 277–292, Feb. 2019, doi: 10.1016/j.ymssp.2018.06.021.
  • [10] O. Sunar and D. Fletcher, ‘Experimental Investigation on the Arc Damage and Fatigue Crack Initiation Risk of Copper-Silver Contact Wires’, IEEE Transactions on Power Delivery, pp. 1–8, 2022, doi: 10.1109/TPWRD.2022.3198734.
  • [11] Z. Wenxuan, M. Meijun, W. Jing, and W. Haiying, ‘Research on Contact Wire Uplift of Typical High-speed Railway at 300km/h and 350km/h’, in 2021 IEEE 2nd China International Youth Conference on Electrical Engineering (CIYCEE), Chengdu, China: IEEE, Dec. 2021, pp. 1–6. doi: 10.1109/CIYCEE53554.2021.9676903.
  • [12] S. Gregori, M. Tur, E. Nadal, and F. J. Fuenmayor, ‘An approach to geometric optimisation of railway catenaries’, Vehicle System Dynamics, vol. 56, no. 8, pp. 1162–1186, Aug. 2018, doi: 10.1080/00423114.2017.1407434.
  • [13] Y. Kim et al., ‘Fatigue life prediction method for contact wire using maximum local stress’, Journal of Mechanical Science and Technology, vol. 29, no. 1, pp. 67–70, Jan. 2015, doi: 10.1007/s12206-014-1210-3.
  • [14] Z. Guo et al., ‘Fatigue life estimation of cold drawn contact wire’, International Journal of Precision Engineering and Manufacturing, vol. 15, no. 11, pp. 2291–2299, Nov. 2014, doi: 10.1007/s12541-014-0593-5.
  • [15] S. H. Kim, R. H. Bae, and J. D. Kwon, ‘Bending fatigue characteristics of wire rope’, Journal of Mechanical Science and Technology, vol. 26, no. 7, pp. 2107–2110, Jul. 2012, doi: 10.1007/s12206-012-0524-2.
  • [16] J. P. Massat, T. M. L. Nguyen-Tajan, H. Maitournam, E. Balmès, A. Bobillot, and J.-P. Massat, ‘Fatigue analysis of catenary contact wires for high speed trains’, in 9th Word Congress on Railway Research WCRR, Lille,France: 9th Word Congress on Railway Research WCRR, 2011.
  • [17] J. Kohlhaas, ‘Interoperable overhead contact line SICAT H1.0 for high-speed line Cologne-Rhine/Main; Interoperable Oberleitung SICAT H1.0 der Schnellfahrstrecke Koeln-Rhein/Main’, Elektrische Bahnen - EB, vol. 100, no. 7, pp. 249–257, 2002.
  • [18] T. Popa, L. Anghel, B. Cernat, R. Hrin, and D. Buretea, ‘Collaborative project H2020-MG-2015-2015 GA-636237’.
  • [19] Furrer+Frey, ‘Series 1 The Great Western Railway Electrification Project Technical Report’, Bern, 2014.
  • [20] F. Kiessling, P. Rainer, A. Schmieder, and S. E, Contact Lines for Electric Railways. Siemens, 2009.
  • [21] G. Zhen et al., ‘Bending fatigue life evaluation of Cu-Mg alloy contact wire’, International Journal of Precision Engineering and Manufacturing, vol. 15, no. 7, pp. 1331–1335, 2014, doi: 10.1007/s12541-014-0473-z.
  • [22] O. Sunar, ‘Arc Damage Identification and Its Effects on Fatigue Life of Contact Wires in Railway Overhead Lines (PhD Thesis)’, The University of Sheffield http://etheses.whiterose.ac.uk/28205/ ISNI:0000 0004 9356 9895, 2021. [Online]. Available: http://etheses.whiterose.ac.uk/28205/
Toplam 22 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Bilimsel Yayınlar (Hakemli Araştırma ve Derleme Makaleler)
Yazarlar

Özgün Sunar 0000-0002-8830-7570

Yayımlanma Tarihi 31 Temmuz 2023
Gönderilme Tarihi 10 Mayıs 2023
Yayımlandığı Sayı Yıl 2023 Sayı: 18

Kaynak Göster

IEEE Ö. Sunar, “Investigation of Contact Force and Stress Relationship in Overhead Line Contact Wires with Finite Element Method”, Demiryolu Mühendisliği, sy. 18, ss. 98–108, Temmuz 2023, doi: 10.47072/demiryolu.1295172.