Ray Yüzey Kusurları ve Ray Kırıklarının Evrişimli Artık Ağ Modeli ile Sınıflandırılması
Yıl 2024,
Sayı: 19, 160 - 170, 31.01.2024
Murat Başaran
,
Ömür Akbayır
,
Mehmet Fidan
,
Mine Sertsöz
,
Muhammet Öztürk
Öz
Demiryolu taşımacılığı, güvenilir, rekabetçi ve çevre dostu bir ulaşım ve yük taşıma alternatifi olduğu için günümüzde, demiryolu hatlarındaki trafiğin artması kaçınılmaz bir durumdur. Artan yolcu talebi sonucu sıklaşan seferler, tren hızlarının yükselmesi ve yüklerinin artması ile birleşince mevcut demiryolu üstyapısına önemli ek yükler getirmektedir. Bu ek yükler, raylarda olası problemlerin ortaya çıkma olasılığını arttırmaktadır. Buna bağlı olarak, raylarda görülen kusurlar daha önemli hale gelmiş; rayların kusurlara karşı kontrol edilmesi ve bakımının zamanında yapılması büyük önem kazanmıştır. Bu çalışmada ray görüntüleri Artık Ağ mimarisini kullanan evrişimli yapay sinir ağı ile eğitilmiş ve ray üzerindeki kusurlar ve ray kırıkları yüksek bir başarıyla sınıflandırılmıştır. Böylelikle birebirine karışma ihtimali fazla olan ve ayrıca ray kırığı probleminin öncülü olabilecek ciddi ray yüzey kusurlarının başlangıç aşamasında tespiti ile bakım onarım faaliyetlerine katkı sunabileceği düşünülmektedir.
Destekleyen Kurum
Eskişehir Teknik Üniversitesi Araştırma Destek Projesi (ADP)
Teşekkür
TCDD Demiryolu Araştırma Teknoloji Merkezi Müdürlüğü (DATEM)
Kaynakça
- [1] L. Kou, "A review of research on detection and evaluation of the rail surface defects.", Acta Polytech. Hungarica vol. 19 no. 3, pp. 167-186, 2022.
- [2] Z. Popović, V. Radović, , L. Lazarević, V. Vukadinović, & G. Tepić, “Rail inspection of RCF defects.”, Metalurgija, vol. 52 no. 4, pp. 537-540, 2013.
- [3] A. Falamarzi, S. Moridpour, & M. Nazem, “A review on existing sensors and devices for inspecting railway infrastructure.”, Jurnal Kejuruteraan, vol. 31 no.1, pp. 1-10, 2019.
- [4] “Rayların Gözle Muayenesine Ait 106 No'lu Genel Emir”, TCDD 106 Nolu Genel Emir, 2012.
- [5] V. W. Anelli et al., "Deep learning-based adaptive image compression system for a real-world scenario." 2020 IEEE Conference on Evolving and Adaptive Intelligent Systems (EAIS), 2020.
- [6] “Piri Reis Yüksek Hızlı Test Treni Raporu”, TCDD, Ankara, 2017.
- [7] M.A. Sevim, A.C. Çelt, S. Kabar, and Ö. Akgünlü “Demiryollarında raylara uygulanan tahribatsız muayene yöntemleri,” Demiryolu Mühendisliği, no. 11, pp. 60-74, Jan. 2020.
- [8] A. Çelik, “Demiryolu ray ve kusurlarını tespit etmek için geliştirilen iki yeni yöntem,” Demiryolu Mühendisliği, no. 12, pp. 52-63, July. 2020. doi: 10.47072/demiryolu.737624
- [9] H. Yılmaz Sönmez, & Z. Öztürk, "Effects of traffic loads and track parameters on rail wear: A case study for Yenikapi–Ataturk Airport Light Rail Transit Line." Urban Rail Transit, vol. 6 no. 4, pp. 244-264, 2020.
- [10] “Rail Defects Handbook: Some Rail Defects, their Characteristics, Causes and Control”, RC 2400 Issue A, Revision 0, Australian Rail Track Corporation, 2006.
- [11] K. He, et al., "Deep residual learning for image recognition.", Proceedings of the IEEE conference on computer vision and pattern recognition, 2016.
- [12] X. Song, K. Chen, & Z. Cao, “ ResNet-based image classification of railway shelling defect.”, Proceedings of 39th Chinese Control Conference pp. 6589-6593, 2020.
- [13] D. Yao, Q. Sun, J. Yang, H. Liu, & J. Zhang, “Railway fastener fault diagnosis based on generative adversarial network and residual network model.”, Shock and vibration, pp.1-15, 2020.
- [14] D. Wang, H. Su, G. Chen, D. Xu, L. Wang, & X. Zhao, “Defect Detection Method of Railway Fastener Based on SPP-improved ResNet”, IEE CAA Symposium on Fault Detection, Supervision, and Safety for Technical Processes (SAFEPROCESS), 2021.
- [15] Z. Zheng, H. Qi, L. Zhuang, & Z. Zhang, “Automated rail surface crack analytics using deep data-driven models and transfer learning.”, Sustainable Cities and Society, no. 70, 2021.
- [16] M. Sevi, İ. Aydın, E. Akın, “Detection of rail surface defects based on ensemble learning of YOLOv5,” Demiryolu Mühendisliği, no. 17, pp. 115-132, Jan. 2023. doi: 10.47072/demiryolu.1205483
- [17] M. Sarıtaş, Y.S. Taşpınar, İ. Çınar & M. Köklü, “Railway Track Fault Detection with ResNet Deep Learning Models.”, International Conference on Intelligent Systems and New Applications (ICISNA’23), pp. 66-72, 2023.
- [18] S.S. Kırat, İ. Aydın, “Açıklanabilir yapay zekâ tabanlı denetimsiz öğrenme ile ray kusur tespiti,” Demiryolu Mühendisliği, no. 18, pp. 1-13, July 2023. doi: 10.47072/demiryolu.1231751
- [19] G. Karaduman, E. Akın, B. Binay, M. Dilekli, “Katener sistemlerindeki izolatör kusurlarının derin öğrenme ile tespiti,” Demiryolu Mühendisliği, no. 16, pp. 185-195, July. 2022. doi: 10.47072/demiryolu.1114665
Classification of Rail Surface Defects and Rail Cracks by Convolutional Residual Network Model
Yıl 2024,
Sayı: 19, 160 - 170, 31.01.2024
Murat Başaran
,
Ömür Akbayır
,
Mehmet Fidan
,
Mine Sertsöz
,
Muhammet Öztürk
Öz
Since railway transportation is a reliable, competitive, and environmentally friendly transportation and freight alternative, it is inevitable that the traffic on railway lines will increase today. Increasing frequency of trips as a result of increasing passenger demand, combined with increased train speeds and increased loads, brings significant additional loads to the existing railway superstructure. These additional loads increase the likelihood of possible problems on the rails. Accordingly, the defects seen in the rails have become more important; It has become of great importance to check the rails for defects and to carry out their maintenance in a timely manner. In this work, rail images were trained with a convolutional artificial neural network using Residual Network architecture, and defects on the rail and rail cracks were classified with high success. Thus, it is thought that it can contribute to maintenance and repair activities by detecting serious rail surface defects at the initial stage, which are likely to interfere with each other and may also be the precursor of rail crack problems.
Kaynakça
- [1] L. Kou, "A review of research on detection and evaluation of the rail surface defects.", Acta Polytech. Hungarica vol. 19 no. 3, pp. 167-186, 2022.
- [2] Z. Popović, V. Radović, , L. Lazarević, V. Vukadinović, & G. Tepić, “Rail inspection of RCF defects.”, Metalurgija, vol. 52 no. 4, pp. 537-540, 2013.
- [3] A. Falamarzi, S. Moridpour, & M. Nazem, “A review on existing sensors and devices for inspecting railway infrastructure.”, Jurnal Kejuruteraan, vol. 31 no.1, pp. 1-10, 2019.
- [4] “Rayların Gözle Muayenesine Ait 106 No'lu Genel Emir”, TCDD 106 Nolu Genel Emir, 2012.
- [5] V. W. Anelli et al., "Deep learning-based adaptive image compression system for a real-world scenario." 2020 IEEE Conference on Evolving and Adaptive Intelligent Systems (EAIS), 2020.
- [6] “Piri Reis Yüksek Hızlı Test Treni Raporu”, TCDD, Ankara, 2017.
- [7] M.A. Sevim, A.C. Çelt, S. Kabar, and Ö. Akgünlü “Demiryollarında raylara uygulanan tahribatsız muayene yöntemleri,” Demiryolu Mühendisliği, no. 11, pp. 60-74, Jan. 2020.
- [8] A. Çelik, “Demiryolu ray ve kusurlarını tespit etmek için geliştirilen iki yeni yöntem,” Demiryolu Mühendisliği, no. 12, pp. 52-63, July. 2020. doi: 10.47072/demiryolu.737624
- [9] H. Yılmaz Sönmez, & Z. Öztürk, "Effects of traffic loads and track parameters on rail wear: A case study for Yenikapi–Ataturk Airport Light Rail Transit Line." Urban Rail Transit, vol. 6 no. 4, pp. 244-264, 2020.
- [10] “Rail Defects Handbook: Some Rail Defects, their Characteristics, Causes and Control”, RC 2400 Issue A, Revision 0, Australian Rail Track Corporation, 2006.
- [11] K. He, et al., "Deep residual learning for image recognition.", Proceedings of the IEEE conference on computer vision and pattern recognition, 2016.
- [12] X. Song, K. Chen, & Z. Cao, “ ResNet-based image classification of railway shelling defect.”, Proceedings of 39th Chinese Control Conference pp. 6589-6593, 2020.
- [13] D. Yao, Q. Sun, J. Yang, H. Liu, & J. Zhang, “Railway fastener fault diagnosis based on generative adversarial network and residual network model.”, Shock and vibration, pp.1-15, 2020.
- [14] D. Wang, H. Su, G. Chen, D. Xu, L. Wang, & X. Zhao, “Defect Detection Method of Railway Fastener Based on SPP-improved ResNet”, IEE CAA Symposium on Fault Detection, Supervision, and Safety for Technical Processes (SAFEPROCESS), 2021.
- [15] Z. Zheng, H. Qi, L. Zhuang, & Z. Zhang, “Automated rail surface crack analytics using deep data-driven models and transfer learning.”, Sustainable Cities and Society, no. 70, 2021.
- [16] M. Sevi, İ. Aydın, E. Akın, “Detection of rail surface defects based on ensemble learning of YOLOv5,” Demiryolu Mühendisliği, no. 17, pp. 115-132, Jan. 2023. doi: 10.47072/demiryolu.1205483
- [17] M. Sarıtaş, Y.S. Taşpınar, İ. Çınar & M. Köklü, “Railway Track Fault Detection with ResNet Deep Learning Models.”, International Conference on Intelligent Systems and New Applications (ICISNA’23), pp. 66-72, 2023.
- [18] S.S. Kırat, İ. Aydın, “Açıklanabilir yapay zekâ tabanlı denetimsiz öğrenme ile ray kusur tespiti,” Demiryolu Mühendisliği, no. 18, pp. 1-13, July 2023. doi: 10.47072/demiryolu.1231751
- [19] G. Karaduman, E. Akın, B. Binay, M. Dilekli, “Katener sistemlerindeki izolatör kusurlarının derin öğrenme ile tespiti,” Demiryolu Mühendisliği, no. 16, pp. 185-195, July. 2022. doi: 10.47072/demiryolu.1114665