Araştırma Makalesi
BibTex RIS Kaynak Göster

Girit Adası ve Rodos Baseni’nin (Doğu Akdeniz) Dengeleme Mekanizmasının Girişim (Admittance) Fonksiyonu ile Araştırılması

Yıl 2020, Cilt: 22 Sayı: 65, 541 - 560, 15.05.2020
https://doi.org/10.21205/deufmd.2020226521

Öz

Kabuğun
ve üst mantonun, topoğrafik yükleri 
gravitasyonel olarak nasıl dengelediği tektonik açıdan önemli bir kavramdır.
Bir bölgedeki yüklerin dengelenme durumu, o bölgeye ait topoğrafya ve gravite
verilerinin irdelenmesi ile belirlenebilmektedir. Tektonik olarak oldukça
karmaşık olan Doğu Akdeniz bölgesinin dengelenme mekanizması, girişim
(Admittance) fonksiyonun kullanılmasıyla literatür genelinde ilk olarak bu
çalışma kapsamında irdelenmiştir. Bu kapsamda, farklı topoğrafik/batimetrik,
gravitasyonel değerlere ve tektonik özelliklere sahip Doğu Akdeniz bölgesi,
Girit Adası ve Rodos baseni olmak üzere iki ayrı bölgeye ayrılarak incelenmiş,
gravite ve topoğrafya verileri arasındaki girişim (admittance) uyumundan
yararlanılarak bu bölgelerin efektif elastik kalınlık değerleri ve ayrıca
düz-ters çözüm teknikleri ile kabuk-manto ara yüzeyine ait bükülme derinlikleri
elde edilmiştir. Sonuç olarak, Doğu Akdeniz’de yer alan bu iki
 bölgenin izostatik modellerinin Airy modeline
uymadığı, Girit Adası ve çevresi için efektif elastik kalınlık değerinin
ortalama 6 km olduğu, Rodos baseni ve çevresi için efektif elastik kalınlık
değerinin ortalama 8 km olduğu saptanmıştır. En uygun efektif elastik kalınlık
değerine karşılık gelen kabuk-manto ara yüzeylerine ait ortalama bükülme
derinliklerinin Girit Adası ve çevresinde yaklaşık 19-29 km, Rodos Baseni ve
çevresinde ise 20-
32 km
arasında değiştiği saptanmıştır. 

Destekleyen Kurum

Dokuz Eylül Üniversitesi Bilimsel Araştırma Projesi

Proje Numarası

2006KBFEN031

Teşekkür

Trieste Üniversitesi’nden Prof. Dr. Carla Braitenberg’e Lithoflex yazılımına erişim ve Erasmus değişim program kapsamında birlikte çalışmamıza olanak sağlamasından dolayı teşekkür ederiz. Bu çalışma, Dokuz Eylül Üniversitesi 2006KBFEN031 nolu Bilimsel Araştırma Projesi kaspamında finansal olarak desteklenmiştir

Kaynakça

  • [1] Şengör, A.M.C., Yılmaz, Y. 1981. Tethyan evolution of Turkey: a plate tectonic approach. Tectonophysics, Cilt 75, s. 181–241.
  • [2] Dewey, J.F., Hempton, M.R., Kidd, W.S.F., Şaroğlu, F., Şengör, A.M.C. 1986. Shortening of continental lithosphere: the neotectonics of eastern Anatolia—a young collision zone. In: Coward, M.P., Ries, A.C. (Eds.), Collision Tectonics. Geological Society Special Publication, Cilt 19, s. 3 – 36.
  • [3] Hancock, P.L., Barka, A.A. 1981. Opposed shear senses inferred from neotectonic mesofractures systems in the North Anatolian fault zone. J. Struct. Geol., Cilt 3, s. 383– 392.
  • [4] Taymaz, T., Jackson, J., Mckenzie, D.P. 1991. Active tectonics of the North and Central Aegean Sea. Geophysical Journal International, Cilt 106, s. 433−490.
  • [5] Okay, A.I. 2000. Was the late Triassic orogeny in Turkey caused by collision of an oceanic plateau? In: Bozkurt E., Winchester J.A. and Piper J.D.A (eds) Tectonics and magmatism in Turkey and surrounding area. Geological Society, London Special Publications, Cilt 173, s. 25–41.
  • [6] Zitter, T.A.C., Woodside, J.M., Mascle, J. 2003. The Anaximander Mountains: a clue to the tectonics of southwest Anatolia. Geological Journal, Cilt 38, s. 375– 394.
  • [7] Salamon, A., Hofstetter, A., Garfunkel, Z., Hagai, R. 2003. Seismotectonics of the Sinai subplate–eastern Mediterranean region. Geophysical Journal International, Cilt 155, s. 149–173.
  • [8] Aksu, A.E., Hall, J., Yaltırak, C. 2005. Miocene to Recent tectonic evolution of the eastern Mediterranean: New pieces of the old Mediterranean puzzle. Marine Geology, Cilt 221, s. 1-13.
  • [9] Papazachos, B.C., Karakostas, V., Papazachos, C., Scordilis, E. 2000. The geometry of the Wadati–Benioff zone and lithospheric kinematics in the Hellenic arc. Tecto, Cilt 319, s. 275–300.
  • [10] Papazachos, C., Nolet, G. 1997. P and S deep velocity structure of the Hellenic area obtained by robust nonlinear inversion of travel times. Journal of Geophysical Research: Solid Earth, Cilt 102(B4), s. 8349-8367.
  • [11] Gönenç, T., Akgün, M., Ergün, M. 2009. Girit Bölgesinin izafi kabuk kalınlığı değişiminin manyetik ve serbest hava gravite anomamlileri ile irdelenmesi. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi, Cilt 11(1), s. 44-56.
  • [12] Hall, J., Aksu, A. E., Yaltırak, C., Winsor, J. D. 2009. Structural architecture of the Rhodes Basin: a deep depocentre that evolved since the Pliocene at the junction of Hellenic and Cyprus Arcs, eastern Mediterranean. Marine Geology, Cilt 258(1-4), s. 1-23.
  • [13] Snopek, K., Meier, T., Endrun, B., Bohnhoff, M., Casten, U. 2007. Comparison of gravimetric and seismic constraints on the structure of the Aegean lithosphere in the forearc of the Hellenic subduction zone in the area of Crete. Journal of Geodynamics, Cilt 44, s. 173–185.
  • [14] Gessner, K., Gallardo, L.A., Markwitz, V., Ring, U., Thomson, S.N. 2013. What caused the denudation of the Menderes Massif: Review of crustal evolution, lithosphere structure, and dynamic topography in southwest Turkey. Gondwana research, Cilt 24(1), s. 243-274.
  • [15] Smith, W.H., Sandwell, D.T. 1997. Global sea floor topography from satellite altimetry and ship depth soundings. Science, Cilt 277(5334), s. 1956-1962.
  • [16] Dorman, L.M., Lewis, B.T.R. 1970. Experimental isostasy 1: theory of determination of the Earth’s response to a concentrated load. Journal of Geophysical Research, Cilt 75, s. 3357-3365.
  • [17] McKenzie, D.P. Bowin, C.O. 1976. The relationship between bathymetry and gravity in the Atlantic Ocean. Journal of Geophysical Research, Cilt 81, s. 1903-1915.
  • [18] Zuber, M.T., Bechtel, T.D., Forsyth, D.W. 1989. Effective elastic thicknesses of the lithosphere and mechanisms of isostatic compensation in Australia. Journal of Geophysical Research: Solid Earth, Cilt 94(B7), s. 9353-9367.
  • [19] Wang, Y., Mareschal, J.C. 1999. Elastic thickness of the lithosphere in the Central Canadian Shield. Geophysical Research Letters, Cilt 26(19), s. 3033-3036.
  • [20] Watts, A.B. 2001. Isostasy and flexure of the lithosphere, England, Cambridge University Pres. s. 87-283.
  • [21] Rajesh, R.S., Mishra, D.C. 2004. Lithospheric thickness and mechanical strength of the Indian shield. Earth and Planetary Science Letters, Cilt 225(3-4), s. 319-328.
  • [22] Pamukçu, O. 2004. Doğu Anadolu Bölgesi’nin jeodinamik yapısının jeofizik verilerle irdelenmesi. Dokuz Eylül Üniversitesi, Fen Bilimleri Enstitüsü, 140s, Doktora Tezi, İzmir.
  • [23] Yurdakul, A. 2005; Izostatik yanıt fonksiyonları ile litosfer yapılarının irdelenmesi, Dokuz Eylül Üniversitesi Fen Bilimleri Enstitüsü, 104s, Yüksek Lisans tezi, İzmir.
  • [24] Luis, J.F., Neves, M.C. 2006. The isostatic compensation of the Azores Plateau: A 3D admittance and coherence analysis. Journal of Volcanology and Geothermal Research, Cilt 156(1-2), s. 10-22.
  • [25] Pamukçu, O.A., Akçığ, Z., Demirbaş, Ş., Zor, E. 2007. Investigation of crustal thickness in Eastern Anatolia using gravity, magnetic and topographic data. Pure and Applied Geophysics, Cilt 164(11), s. 2345-2358.
  • [26] Pamukcu, O., Yurdakul, A. 2008. Isostatic compensation in western Anatolia with estimate of the effective elastic thickness. Turkish Journal of Earth Sciences, Cilt 17(3), s. 545-557.
  • [27] Oruç, B., Sönmez, T. 2017. The rheological structure of the lithosphere in the Eastern Marmara region, Turkey. Journal of Asian Earth Sciences, Cilt 139, s. 183-191.
  • [28] Oruç, B., Pamukçu, O., Sayın, T. 2019. Isostatic Moho undulations and estimated elastic thicknesses of the lithosphere in the central Anatolian plateau, Turkey. Journal of Asian Earth Sciences, Cilt 170, s. 166-173.
  • [29] Braitenberg, C., Wienecke, S., Wang Y. 2006. Basement structures from satellite-derived gravity field: South China Sea ridge. Journal of Geophysical Research: Solid Earth, 111(B5).
  • [30] Wienecke, S. 2006. A new analytical solution for the calculation of flexural rigidity: significance and applications. Free University, Doktora Tezi , Berlin-Germany. [31] Turcotte, D.L., Schubert, G. 1982. Geodynamics: Applications of. Continuum Physics to Geological Problems. Wiley, New York, 140.
  • [32] Timoshenko, S. 1958. Strength of materials. Part I. Elementary theory and problems. New York: D. Van Nostrand Co.
  • [33] McKenzie, D., Fairhead, D. 1997. Estimates of the effective elastic thickness of the continental lithosphere from Bouguer and free air gravity anomalies. Journal of Geophysical Research, Cilt 102, s. 27523-27552.
  • [34] Forsyth, D.W. 1985. Subsurface loading and estimates of the flexural rigidity of continental lithosphere. Journal of Geophysical Research: Solid Earth, Cilt 90(B14), s. 12623-12632.
  • [35] Parker, R.L. 1972. The rapid calculation of potential anomalies. Geophysics Journal Research Astr. Soc., Cilt 31, s. 447-550.
  • [36] Braitenberg, C., Zadro M. 1999. Iterative 3D gravity inversion with integration of seismologic data. Bollettino Di Geofisica Teorica Ed applicata, Cilt 40, s. 469-476.
  • [37] Nagy, D. 1966. The gravitational attraction of a right rectangular prism. Geophysics, Cilt 30, s. 362-371.
  • [38] Rusya Savunma Bakanlığı Navigasyon ve Oşinografi Daire Başkanlığı (Department of Navigation and Oceanography of the Ministry of Defence of the Russian Federation) 1989. Bouguer gravite haritası.
  • [39] Bohnhoff, M., Makris, J., Papanikolaou, D., Stavrakakis, G. 2001., Crustal investigation of the Hellenic subduction zone using wide aperture seismic data, Tectonophysics, Cilt 343 (3–4), s. 239–262.
  • [40] Spector, A., Grant, F.S. 1970. Statistical models for interpreting aeromagnetic data. Geophysics, Cilt 35(2), s. 293-302.
  • [41] Ergün, M., Okay, S., Sarı, C., Oral, E. Z. ,Ash, M., Hall, J., Miller H. 2005. Gravity anomalies of the Cyprus Arc and their tectonic implications. Marine Geology, Cilt 221, s. 349-358.
  • [42] Le Pichon, X., Angelier, J. 1979. The hellenic arc and trench system: A key neotectonic evoluation of the eatern Mediterranean area, Tectonophysics, Cilt 60, s. 1-42.
  • [43] Ryan, W.B., Kastens, K.A., Cita, M.B. 1982. Geological evidence concerning compressional tectonics in the Eastern Mediterranean. Tectonophysics, Cilt 86(1-3), s. 213-242.
  • [44] Le Pichon, X., Lybéris, N., Angelier, J., Renard, V. 1982. Strain distribution over the east Mediterranean ridge: A synthesis incorporating new Sea-Beam data. Tectonophysics, Cilt 86(1-3), s.243-274.
  • [45] Spakman, W., Wortel, M.J.R., Vlaar, N.J. 1988. The Hellenic subduction zone: a tomographic image and its geodynamic implication. Geophyical Research Letters, Cilt 15, s. 60–63.
  • [46] Truffert, C., Chamot-Rooke, N., Lallemant, S., De Voogd, B., Huchon, P., Pichon, X. 1993. The crust of the Western Mediterranean Ridge from deep seismic data and gravity modelling. Geophyical Journal International, Cilt 114(2), s. 360–372.
  • [47] Chaumillon, E., Mascle, J., Hoffmann, H.J. 1996. Deformation of the western Mediterranean Ridge: Importance of Messinian evaporitic formations. Tectonophysics, Cilt 263(1-4), s. 163-190.
  • [48] Chaumillon, E., Mascle, J. 1997. From foreland to forearc domains: new multichannel seismic reflection survey of the Mediterranean Ridge accretionary complex (Eastern Mediterranean). Marine Geology, Cilt 138(3-4), s. 237-259.
  • [49] Delibasis, N., Ziazia, M., Voulgaris, N., Papadopoulos, T., Stavrakakis, G., Papanastassiou, D., Drakatos, G. 1999. Microseismic activity and seismotectonics of Heraklion area (central Crete Island, Greece). Tectonophysics, Cilt 308(1-2), s. 237-248.
  • [50] Knapmeyer, M., Harjes, H.P. 2000. Imaging crustal discontinuities and the down going slab beneath western Crete. Geophysical Journal International, Cilt 143(1), s. 1-21.
  • [51] Stiros, S.C. 2000. TheAD365 Crete earthquake and possible seismic clustering during the fourth to sixth centuries AD in the Eastern Mediterranean: a review of historical and archaeological data. J. Struct. Geol. Cilt 23, s. 545–562.
  • [52] Huguen, C., Mascle, J., Chaumillon, E., Woodside, J.M., Benkhelil, J., Kopf, A., Volkonskaia, A. 2001. Deformational styles of the Eastern Mediterranean Ridge and surroundings from combined swath mapping and seismic reflection profiling. Tectonophy, Cilt 343, s. 21–47.
  • [53] Brönner, M. 2003. Untersuchung des Krustenaufbaus entlang des Mediterranen Ruckens abgeleitet aus geophysikalischen Messungen. In: Berichte aus dem Zentrum für Meeres und Klimaforschung, Reihe C, Geophysik Nr. 21. Universitat Hamburg, p. 170.
  • [54] Li, X., Bock, G., Vafidis, A., Kind, R., Harjes, H., Hanka, W., Wylegalla, K., Van Der Meijde, M., Yuan, X. 2003. Receiver function study of the Hellenic subduction zone: imaging crustal thickness variations and the oceanic Moho of the descending African lithosphere. Geophysical Journal International, Cilt 155, s. 733–748.
  • [55] Zitter, T.A.C., Woodside, J.M., Mascle, J. 2003. The Anaximander Mountains: a clue to the tectonics of southwest Anatolia. Geological Journal, Cilt 38, s. 375–394.
  • [56] Meier, T., Rische, M., Endruna, B., Vafidis, A., Harjes, H.P. 2004. Seismicity of the Hellenic subduction zone in the area of western and central Crete observed by temporary local seismic networks. Tecto, Cilt 383, s. 149–169.
  • [57] Brocher, M.T. 2005. Empirical Relations between Elastic Wavespeeds and Density in the Earth’s Crust. Bulletin of the Seismological Society of America, Cilt 95(6), s. 2081–2092.
  • [58] Casten, U., Snopek, K. 2006. Gravity modelling of the Hellenic subduction zone—a regional study. Tectonophysics, Cilt 417(3-4), s. 183-200.
  • [59] Makris, J., Yegorova, T. 2006. A 3-D density–velocity model between the Cretan Sea and Libya. Tectonophysics, Cilt 417(3-4), s. 201-220.
  • [60] Gönenç, T., Akgün, M. 2012. Structure of the hellenic subduction zone from gravity gradient functions and seismology. Pure and Applied Geophysics, Cilt 169(7), s. 1231–1255.
  • [61] Yolsal-Çevikbilen, S., Taymaz, T. 2012. Earthquake source parameters along the Hellenic subduction zone and numerical simulations of historical tsunamis in the Eastern Mediterranean. Tectonophysics, Cilt 536, s. 61-100.
  • [62] Özbakır, A. D., Şengör, A. M. C., Wortel, M. J. R., Govers, R. 2013. The Pliny–Strabo trench region: A large shear zone resulting from slab tearing. Earth and Planetary Science Letters, Cilt 375, s. 188-195.
  • [63] Gallen, S.F., Wegmann, K.W., Bohnenstiehl, D.R., Pazzaglia, F.J., Brandon, M.T., Fassoulas, C. 2014. Active simultaneous uplift and margin-normal extension in a forearc high, Crete, Greece. Earth and Planetary Science Letters, Cilt 398, s. 11–24.
  • [64] Pamukçu, O. 2016. Geodynamic assessment of Eastern Mediterranean region: a joint gravity and seismic b value approach. Arabian Journal of Geosciences, Cilt 9(360), s.1-13.
  • [65] Şahin, Ş., Çiftçi, C., Okyar, M., Öksüm, E. 2018. Doğu Akdeniz’in Kabuk Yapısı ve Sismik Hız Dağılımının Üç Boyutlu Sismik Tomografi ile Belirlenmesi. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, Cilt 22(2), s. 961-971.
  • [66] Hall, J., Aksu, A. E., Elitez, I., Yaltırak, C., Çifçi, G. 2014. The Fethiye–Burdur Fault Zone: a component of upper plate extension of the subduction transform edge propagator fault linking Hellenic and Cyprus Arcs, Eastern Mediterranean. Tectonophysics, Cilt 635, s. 80-99.
  • [67] Elitez, İ., Yaltırak, C., Aktuğ, B. 2016. Extensional and compressional regime driven left-lateral shear in southwestern Anatolia (eastern Mediterranean): The Burdur-Fethiye Shear Zone. Tectonophysics, Cilt 688, s. 26-35.

Analyzing the Compensation Mechanism of Crete Island and Rhodos Basin (Eastern Mediterranean Sea) with Admittance Function

Yıl 2020, Cilt: 22 Sayı: 65, 541 - 560, 15.05.2020
https://doi.org/10.21205/deufmd.2020226521

Öz

It is a tectonically important
concept how the crust and the upper mantle gravitationally balancing the
topographic loads. Balancing the loads in a region can be determined by
examining the topographic and gravity data. In this study, the balancing
mechanism of Eastern Mediterranean region, which is quite tectonically complex,
was determined by using Admittance function as the first time in the literature.
In this context, Eastern Mediterranean region, which has different
topographic/bathymetric, gravity values and tectonic features, was divided into
two regions as Crete Island and Rhodos basin. 
The effective elastic thickness values of these regions were obtained by
using the coherency of admittance between gravity and topography values and
average flexure depths of the crustal-mantle interfaces were calculated by
forward-inverse solutions. As the result, it is determined that the isostatic
models of Eastern Mediterranean regions do not fit with the Airy model and the
effective elastic thickness values of Crete Island-its surroundings and Rhodos basin-its
surroundings are approximately 6 km and 8 km, respectively. The average flexure
depths of the crustal-mantle interfaces related to the optimal effective
elastic thickness value of Crete Island and Rhodos basin are approximately
19-29 km and 20-32 km, respectively.

Proje Numarası

2006KBFEN031

Kaynakça

  • [1] Şengör, A.M.C., Yılmaz, Y. 1981. Tethyan evolution of Turkey: a plate tectonic approach. Tectonophysics, Cilt 75, s. 181–241.
  • [2] Dewey, J.F., Hempton, M.R., Kidd, W.S.F., Şaroğlu, F., Şengör, A.M.C. 1986. Shortening of continental lithosphere: the neotectonics of eastern Anatolia—a young collision zone. In: Coward, M.P., Ries, A.C. (Eds.), Collision Tectonics. Geological Society Special Publication, Cilt 19, s. 3 – 36.
  • [3] Hancock, P.L., Barka, A.A. 1981. Opposed shear senses inferred from neotectonic mesofractures systems in the North Anatolian fault zone. J. Struct. Geol., Cilt 3, s. 383– 392.
  • [4] Taymaz, T., Jackson, J., Mckenzie, D.P. 1991. Active tectonics of the North and Central Aegean Sea. Geophysical Journal International, Cilt 106, s. 433−490.
  • [5] Okay, A.I. 2000. Was the late Triassic orogeny in Turkey caused by collision of an oceanic plateau? In: Bozkurt E., Winchester J.A. and Piper J.D.A (eds) Tectonics and magmatism in Turkey and surrounding area. Geological Society, London Special Publications, Cilt 173, s. 25–41.
  • [6] Zitter, T.A.C., Woodside, J.M., Mascle, J. 2003. The Anaximander Mountains: a clue to the tectonics of southwest Anatolia. Geological Journal, Cilt 38, s. 375– 394.
  • [7] Salamon, A., Hofstetter, A., Garfunkel, Z., Hagai, R. 2003. Seismotectonics of the Sinai subplate–eastern Mediterranean region. Geophysical Journal International, Cilt 155, s. 149–173.
  • [8] Aksu, A.E., Hall, J., Yaltırak, C. 2005. Miocene to Recent tectonic evolution of the eastern Mediterranean: New pieces of the old Mediterranean puzzle. Marine Geology, Cilt 221, s. 1-13.
  • [9] Papazachos, B.C., Karakostas, V., Papazachos, C., Scordilis, E. 2000. The geometry of the Wadati–Benioff zone and lithospheric kinematics in the Hellenic arc. Tecto, Cilt 319, s. 275–300.
  • [10] Papazachos, C., Nolet, G. 1997. P and S deep velocity structure of the Hellenic area obtained by robust nonlinear inversion of travel times. Journal of Geophysical Research: Solid Earth, Cilt 102(B4), s. 8349-8367.
  • [11] Gönenç, T., Akgün, M., Ergün, M. 2009. Girit Bölgesinin izafi kabuk kalınlığı değişiminin manyetik ve serbest hava gravite anomamlileri ile irdelenmesi. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi, Cilt 11(1), s. 44-56.
  • [12] Hall, J., Aksu, A. E., Yaltırak, C., Winsor, J. D. 2009. Structural architecture of the Rhodes Basin: a deep depocentre that evolved since the Pliocene at the junction of Hellenic and Cyprus Arcs, eastern Mediterranean. Marine Geology, Cilt 258(1-4), s. 1-23.
  • [13] Snopek, K., Meier, T., Endrun, B., Bohnhoff, M., Casten, U. 2007. Comparison of gravimetric and seismic constraints on the structure of the Aegean lithosphere in the forearc of the Hellenic subduction zone in the area of Crete. Journal of Geodynamics, Cilt 44, s. 173–185.
  • [14] Gessner, K., Gallardo, L.A., Markwitz, V., Ring, U., Thomson, S.N. 2013. What caused the denudation of the Menderes Massif: Review of crustal evolution, lithosphere structure, and dynamic topography in southwest Turkey. Gondwana research, Cilt 24(1), s. 243-274.
  • [15] Smith, W.H., Sandwell, D.T. 1997. Global sea floor topography from satellite altimetry and ship depth soundings. Science, Cilt 277(5334), s. 1956-1962.
  • [16] Dorman, L.M., Lewis, B.T.R. 1970. Experimental isostasy 1: theory of determination of the Earth’s response to a concentrated load. Journal of Geophysical Research, Cilt 75, s. 3357-3365.
  • [17] McKenzie, D.P. Bowin, C.O. 1976. The relationship between bathymetry and gravity in the Atlantic Ocean. Journal of Geophysical Research, Cilt 81, s. 1903-1915.
  • [18] Zuber, M.T., Bechtel, T.D., Forsyth, D.W. 1989. Effective elastic thicknesses of the lithosphere and mechanisms of isostatic compensation in Australia. Journal of Geophysical Research: Solid Earth, Cilt 94(B7), s. 9353-9367.
  • [19] Wang, Y., Mareschal, J.C. 1999. Elastic thickness of the lithosphere in the Central Canadian Shield. Geophysical Research Letters, Cilt 26(19), s. 3033-3036.
  • [20] Watts, A.B. 2001. Isostasy and flexure of the lithosphere, England, Cambridge University Pres. s. 87-283.
  • [21] Rajesh, R.S., Mishra, D.C. 2004. Lithospheric thickness and mechanical strength of the Indian shield. Earth and Planetary Science Letters, Cilt 225(3-4), s. 319-328.
  • [22] Pamukçu, O. 2004. Doğu Anadolu Bölgesi’nin jeodinamik yapısının jeofizik verilerle irdelenmesi. Dokuz Eylül Üniversitesi, Fen Bilimleri Enstitüsü, 140s, Doktora Tezi, İzmir.
  • [23] Yurdakul, A. 2005; Izostatik yanıt fonksiyonları ile litosfer yapılarının irdelenmesi, Dokuz Eylül Üniversitesi Fen Bilimleri Enstitüsü, 104s, Yüksek Lisans tezi, İzmir.
  • [24] Luis, J.F., Neves, M.C. 2006. The isostatic compensation of the Azores Plateau: A 3D admittance and coherence analysis. Journal of Volcanology and Geothermal Research, Cilt 156(1-2), s. 10-22.
  • [25] Pamukçu, O.A., Akçığ, Z., Demirbaş, Ş., Zor, E. 2007. Investigation of crustal thickness in Eastern Anatolia using gravity, magnetic and topographic data. Pure and Applied Geophysics, Cilt 164(11), s. 2345-2358.
  • [26] Pamukcu, O., Yurdakul, A. 2008. Isostatic compensation in western Anatolia with estimate of the effective elastic thickness. Turkish Journal of Earth Sciences, Cilt 17(3), s. 545-557.
  • [27] Oruç, B., Sönmez, T. 2017. The rheological structure of the lithosphere in the Eastern Marmara region, Turkey. Journal of Asian Earth Sciences, Cilt 139, s. 183-191.
  • [28] Oruç, B., Pamukçu, O., Sayın, T. 2019. Isostatic Moho undulations and estimated elastic thicknesses of the lithosphere in the central Anatolian plateau, Turkey. Journal of Asian Earth Sciences, Cilt 170, s. 166-173.
  • [29] Braitenberg, C., Wienecke, S., Wang Y. 2006. Basement structures from satellite-derived gravity field: South China Sea ridge. Journal of Geophysical Research: Solid Earth, 111(B5).
  • [30] Wienecke, S. 2006. A new analytical solution for the calculation of flexural rigidity: significance and applications. Free University, Doktora Tezi , Berlin-Germany. [31] Turcotte, D.L., Schubert, G. 1982. Geodynamics: Applications of. Continuum Physics to Geological Problems. Wiley, New York, 140.
  • [32] Timoshenko, S. 1958. Strength of materials. Part I. Elementary theory and problems. New York: D. Van Nostrand Co.
  • [33] McKenzie, D., Fairhead, D. 1997. Estimates of the effective elastic thickness of the continental lithosphere from Bouguer and free air gravity anomalies. Journal of Geophysical Research, Cilt 102, s. 27523-27552.
  • [34] Forsyth, D.W. 1985. Subsurface loading and estimates of the flexural rigidity of continental lithosphere. Journal of Geophysical Research: Solid Earth, Cilt 90(B14), s. 12623-12632.
  • [35] Parker, R.L. 1972. The rapid calculation of potential anomalies. Geophysics Journal Research Astr. Soc., Cilt 31, s. 447-550.
  • [36] Braitenberg, C., Zadro M. 1999. Iterative 3D gravity inversion with integration of seismologic data. Bollettino Di Geofisica Teorica Ed applicata, Cilt 40, s. 469-476.
  • [37] Nagy, D. 1966. The gravitational attraction of a right rectangular prism. Geophysics, Cilt 30, s. 362-371.
  • [38] Rusya Savunma Bakanlığı Navigasyon ve Oşinografi Daire Başkanlığı (Department of Navigation and Oceanography of the Ministry of Defence of the Russian Federation) 1989. Bouguer gravite haritası.
  • [39] Bohnhoff, M., Makris, J., Papanikolaou, D., Stavrakakis, G. 2001., Crustal investigation of the Hellenic subduction zone using wide aperture seismic data, Tectonophysics, Cilt 343 (3–4), s. 239–262.
  • [40] Spector, A., Grant, F.S. 1970. Statistical models for interpreting aeromagnetic data. Geophysics, Cilt 35(2), s. 293-302.
  • [41] Ergün, M., Okay, S., Sarı, C., Oral, E. Z. ,Ash, M., Hall, J., Miller H. 2005. Gravity anomalies of the Cyprus Arc and their tectonic implications. Marine Geology, Cilt 221, s. 349-358.
  • [42] Le Pichon, X., Angelier, J. 1979. The hellenic arc and trench system: A key neotectonic evoluation of the eatern Mediterranean area, Tectonophysics, Cilt 60, s. 1-42.
  • [43] Ryan, W.B., Kastens, K.A., Cita, M.B. 1982. Geological evidence concerning compressional tectonics in the Eastern Mediterranean. Tectonophysics, Cilt 86(1-3), s. 213-242.
  • [44] Le Pichon, X., Lybéris, N., Angelier, J., Renard, V. 1982. Strain distribution over the east Mediterranean ridge: A synthesis incorporating new Sea-Beam data. Tectonophysics, Cilt 86(1-3), s.243-274.
  • [45] Spakman, W., Wortel, M.J.R., Vlaar, N.J. 1988. The Hellenic subduction zone: a tomographic image and its geodynamic implication. Geophyical Research Letters, Cilt 15, s. 60–63.
  • [46] Truffert, C., Chamot-Rooke, N., Lallemant, S., De Voogd, B., Huchon, P., Pichon, X. 1993. The crust of the Western Mediterranean Ridge from deep seismic data and gravity modelling. Geophyical Journal International, Cilt 114(2), s. 360–372.
  • [47] Chaumillon, E., Mascle, J., Hoffmann, H.J. 1996. Deformation of the western Mediterranean Ridge: Importance of Messinian evaporitic formations. Tectonophysics, Cilt 263(1-4), s. 163-190.
  • [48] Chaumillon, E., Mascle, J. 1997. From foreland to forearc domains: new multichannel seismic reflection survey of the Mediterranean Ridge accretionary complex (Eastern Mediterranean). Marine Geology, Cilt 138(3-4), s. 237-259.
  • [49] Delibasis, N., Ziazia, M., Voulgaris, N., Papadopoulos, T., Stavrakakis, G., Papanastassiou, D., Drakatos, G. 1999. Microseismic activity and seismotectonics of Heraklion area (central Crete Island, Greece). Tectonophysics, Cilt 308(1-2), s. 237-248.
  • [50] Knapmeyer, M., Harjes, H.P. 2000. Imaging crustal discontinuities and the down going slab beneath western Crete. Geophysical Journal International, Cilt 143(1), s. 1-21.
  • [51] Stiros, S.C. 2000. TheAD365 Crete earthquake and possible seismic clustering during the fourth to sixth centuries AD in the Eastern Mediterranean: a review of historical and archaeological data. J. Struct. Geol. Cilt 23, s. 545–562.
  • [52] Huguen, C., Mascle, J., Chaumillon, E., Woodside, J.M., Benkhelil, J., Kopf, A., Volkonskaia, A. 2001. Deformational styles of the Eastern Mediterranean Ridge and surroundings from combined swath mapping and seismic reflection profiling. Tectonophy, Cilt 343, s. 21–47.
  • [53] Brönner, M. 2003. Untersuchung des Krustenaufbaus entlang des Mediterranen Ruckens abgeleitet aus geophysikalischen Messungen. In: Berichte aus dem Zentrum für Meeres und Klimaforschung, Reihe C, Geophysik Nr. 21. Universitat Hamburg, p. 170.
  • [54] Li, X., Bock, G., Vafidis, A., Kind, R., Harjes, H., Hanka, W., Wylegalla, K., Van Der Meijde, M., Yuan, X. 2003. Receiver function study of the Hellenic subduction zone: imaging crustal thickness variations and the oceanic Moho of the descending African lithosphere. Geophysical Journal International, Cilt 155, s. 733–748.
  • [55] Zitter, T.A.C., Woodside, J.M., Mascle, J. 2003. The Anaximander Mountains: a clue to the tectonics of southwest Anatolia. Geological Journal, Cilt 38, s. 375–394.
  • [56] Meier, T., Rische, M., Endruna, B., Vafidis, A., Harjes, H.P. 2004. Seismicity of the Hellenic subduction zone in the area of western and central Crete observed by temporary local seismic networks. Tecto, Cilt 383, s. 149–169.
  • [57] Brocher, M.T. 2005. Empirical Relations between Elastic Wavespeeds and Density in the Earth’s Crust. Bulletin of the Seismological Society of America, Cilt 95(6), s. 2081–2092.
  • [58] Casten, U., Snopek, K. 2006. Gravity modelling of the Hellenic subduction zone—a regional study. Tectonophysics, Cilt 417(3-4), s. 183-200.
  • [59] Makris, J., Yegorova, T. 2006. A 3-D density–velocity model between the Cretan Sea and Libya. Tectonophysics, Cilt 417(3-4), s. 201-220.
  • [60] Gönenç, T., Akgün, M. 2012. Structure of the hellenic subduction zone from gravity gradient functions and seismology. Pure and Applied Geophysics, Cilt 169(7), s. 1231–1255.
  • [61] Yolsal-Çevikbilen, S., Taymaz, T. 2012. Earthquake source parameters along the Hellenic subduction zone and numerical simulations of historical tsunamis in the Eastern Mediterranean. Tectonophysics, Cilt 536, s. 61-100.
  • [62] Özbakır, A. D., Şengör, A. M. C., Wortel, M. J. R., Govers, R. 2013. The Pliny–Strabo trench region: A large shear zone resulting from slab tearing. Earth and Planetary Science Letters, Cilt 375, s. 188-195.
  • [63] Gallen, S.F., Wegmann, K.W., Bohnenstiehl, D.R., Pazzaglia, F.J., Brandon, M.T., Fassoulas, C. 2014. Active simultaneous uplift and margin-normal extension in a forearc high, Crete, Greece. Earth and Planetary Science Letters, Cilt 398, s. 11–24.
  • [64] Pamukçu, O. 2016. Geodynamic assessment of Eastern Mediterranean region: a joint gravity and seismic b value approach. Arabian Journal of Geosciences, Cilt 9(360), s.1-13.
  • [65] Şahin, Ş., Çiftçi, C., Okyar, M., Öksüm, E. 2018. Doğu Akdeniz’in Kabuk Yapısı ve Sismik Hız Dağılımının Üç Boyutlu Sismik Tomografi ile Belirlenmesi. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, Cilt 22(2), s. 961-971.
  • [66] Hall, J., Aksu, A. E., Elitez, I., Yaltırak, C., Çifçi, G. 2014. The Fethiye–Burdur Fault Zone: a component of upper plate extension of the subduction transform edge propagator fault linking Hellenic and Cyprus Arcs, Eastern Mediterranean. Tectonophysics, Cilt 635, s. 80-99.
  • [67] Elitez, İ., Yaltırak, C., Aktuğ, B. 2016. Extensional and compressional regime driven left-lateral shear in southwestern Anatolia (eastern Mediterranean): The Burdur-Fethiye Shear Zone. Tectonophysics, Cilt 688, s. 26-35.
Toplam 66 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Araştırma Makalesi
Yazarlar

Ayça Çırmık 0000-0001-9500-671X

Oya Pamukçu 0000-0003-3564-1919

Proje Numarası 2006KBFEN031
Yayımlanma Tarihi 15 Mayıs 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 22 Sayı: 65

Kaynak Göster

APA Çırmık, A., & Pamukçu, O. (2020). Girit Adası ve Rodos Baseni’nin (Doğu Akdeniz) Dengeleme Mekanizmasının Girişim (Admittance) Fonksiyonu ile Araştırılması. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, 22(65), 541-560. https://doi.org/10.21205/deufmd.2020226521
AMA Çırmık A, Pamukçu O. Girit Adası ve Rodos Baseni’nin (Doğu Akdeniz) Dengeleme Mekanizmasının Girişim (Admittance) Fonksiyonu ile Araştırılması. DEUFMD. Mayıs 2020;22(65):541-560. doi:10.21205/deufmd.2020226521
Chicago Çırmık, Ayça, ve Oya Pamukçu. “Girit Adası Ve Rodos Baseni’nin (Doğu Akdeniz) Dengeleme Mekanizmasının Girişim (Admittance) Fonksiyonu Ile Araştırılması”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi 22, sy. 65 (Mayıs 2020): 541-60. https://doi.org/10.21205/deufmd.2020226521.
EndNote Çırmık A, Pamukçu O (01 Mayıs 2020) Girit Adası ve Rodos Baseni’nin (Doğu Akdeniz) Dengeleme Mekanizmasının Girişim (Admittance) Fonksiyonu ile Araştırılması. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 22 65 541–560.
IEEE A. Çırmık ve O. Pamukçu, “Girit Adası ve Rodos Baseni’nin (Doğu Akdeniz) Dengeleme Mekanizmasının Girişim (Admittance) Fonksiyonu ile Araştırılması”, DEUFMD, c. 22, sy. 65, ss. 541–560, 2020, doi: 10.21205/deufmd.2020226521.
ISNAD Çırmık, Ayça - Pamukçu, Oya. “Girit Adası Ve Rodos Baseni’nin (Doğu Akdeniz) Dengeleme Mekanizmasının Girişim (Admittance) Fonksiyonu Ile Araştırılması”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 22/65 (Mayıs 2020), 541-560. https://doi.org/10.21205/deufmd.2020226521.
JAMA Çırmık A, Pamukçu O. Girit Adası ve Rodos Baseni’nin (Doğu Akdeniz) Dengeleme Mekanizmasının Girişim (Admittance) Fonksiyonu ile Araştırılması. DEUFMD. 2020;22:541–560.
MLA Çırmık, Ayça ve Oya Pamukçu. “Girit Adası Ve Rodos Baseni’nin (Doğu Akdeniz) Dengeleme Mekanizmasının Girişim (Admittance) Fonksiyonu Ile Araştırılması”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, c. 22, sy. 65, 2020, ss. 541-60, doi:10.21205/deufmd.2020226521.
Vancouver Çırmık A, Pamukçu O. Girit Adası ve Rodos Baseni’nin (Doğu Akdeniz) Dengeleme Mekanizmasının Girişim (Admittance) Fonksiyonu ile Araştırılması. DEUFMD. 2020;22(65):541-60.

Dokuz Eylül Üniversitesi, Mühendislik Fakültesi Dekanlığı Tınaztepe Yerleşkesi, Adatepe Mah. Doğuş Cad. No: 207-I / 35390 Buca-İZMİR.