Gravity Tensors and Moho Depth Variations of the Region between West Italy and Eastern of Caspian Sea
Yıl 2024,
Cilt: 26 Sayı: 77, 218 - 230, 27.05.2024
Fikret Doğru
,
Oya Pamukçu
Öz
The crust structure of the region from the west of Italy to the east of the Caspian Sea was examined within the scope of this study. In addition, the effect of both the shallow and deep structure were revealed by calculating the gravity tensors of the region in different degrees. For this purpose, the spherical free air gravity anomaly of the region was first calculated. The combination of EGM2008 and GOCE DIR R4 models were used for this calculation. Then the gravity tensors of the region were calculated separately using only EGM2008 model and only GOCE DIR R4. The spherical free air anomaly of the region was calculated using the topographic model. The spherical Bouguer anomaly of the region was obtained by subtracting the anomaly obtained from this topographic model from the spherical free air anomaly obtained from GOCE DIR R4 + EGM2008 combined model. The radial averaged power spectrum of the spherical Bouguer anomaly was taken and the anomaly thought to be caused by Moho was filtered out. Moho depth map of the whole region was obtained by applying the Parker-Oldenburg inversion to the filtered anomaly. The obtained values were compared with previous studies and found to be compatible.
Destekleyen Kurum
Dokuz Eylül Üniversitesi BAP
Proje Numarası
2018.KB.FEN.013
Teşekkür
This study is funded by Dokuz Eylul University No 2018.KB.FEN.013 Scientific Research Project.
Kaynakça
- Dewey, J.F., Bird, J.M. 1970. Mountain belts and the new global tectonics. Journal of Geophysical Research, 75(14), 2625-2647.DOI:10.1029/JB075i014p02625.
- McKenzie, D. 1978. Active tectonics of the Alpine—Himalayan belt: the Aegean Sea and surrounding regions. Geophysical Journal International, 55(1), 217-254. DOI:10.1111/j.1365-246X.1978.tb04759.x.
- Jackson, J., McKenzie, D. 1984. Active tectonics of the Alpine—Himalayan Belt between western Turkey and Pakistan. Geophysical Journal International, 77(1), 185-264. DOI:10.1111/j.1365-246X.1984.tb01931.x.
- Angelier, J. 1978. Tectonic evolution of the Hellenic Arc since the late Miocene. Tectonophysics, 49(1-2), 23-36. DOI: 10.1016/0040-1951(78)90096-3.
- Angelier, J., Lyberis, N., Le Pichon, X., Barrier, E., Huchon, P. 1982. The tectonic development of the Hellenic arc and the Sea of Crete: a synthesis. Tectonophysics, 86(1-3), 159-196. DOI: 10.1016/0040-1951(82)90066-X.
- Anastasakis, G., Kelling, G. 1991. Tectonic connection of the Hellenic and Cyprus arcs and related geotectonic elements. Marine Geology, 97(3-4), 261-277. DOI: 10.1016/0025-3227(91)90120-S.
- Styron, R. 2019. GEMScienceTools/gem-global-active-faults: First release of 2019 (Version 2019.0). Zenodo. DOI:10.5281/zenodo.3376300.
- Dogru, F., Pamukcu, O., Gonenc, T., Yildiz, H. 2018. Lithospheric structure of western Anatolia and the Aegean Sea using GOCE-based gravity field models. Bollettino di Geofisica Teorica ed Applicata, 59(2), 135-160. DOI:10.4430/bgta0231.
- Bruinsma, S.L., Förste, C., Abrikosov, O., Marty, J.C., Rio, M.H., Mulet, S., Bonvalot, S. 2013. The new ESA satellite‐only gravity field model via the direct approach. Geophysical Research Letters, 40(14), 3607-3612. DOI: 10.1002/grl.50716.
- Pavlis, N.K., Holmes, S.A., Kenyon, S.C., Factor, J.K. 2008. An earth gravitational model to degree 2160: EGM2008. EGU general assembly, 10, 13-18.
- Rexer, M., Hirt, C., Claessens, S., Tenzer, R. 2016. Layer-based modelling of the Earth’s gravitational potential up to 10-km scale in spherical harmonics in spherical and ellipsoidal approximation. Surveys in Geophysics, 37(6), 1035-1074. DOI: 10.1007/s10712-016-9382-2.
- Bucha, B., Janák, J. 2013. A MATLAB-based graphical user interface program for computing functionals of the geopotential up to ultra-high degrees and orders. Computers and Geosciences, 56, 186–196. DOI: 10.1016/j.cageo.2013.03.012.
- Spector, A., Grant, F. 1970. Statistical models for interpreting aeromagnetic data, Geophysics, 35, 293–302. DOI: 10.1190/1.1440092.
- Pawlowski, R.S., Hansen, R.O. 1990. Gravity anomaly separation by Wiener filtering. Geophysics, 55(4), 539-548. DOI: 10.1190/1.1442865.
- Pawlowski, R.S. 1994. Green’s equivalent-layer concept in gravity band-pass filter design. Geophysics, 59, 69–76. DOI: 10.1190/1.1443535.
- Sönmez, T. 2016. Doğu Marmara Bölgesinin litosfer dinamiklerinin EGM2008 gravite anomalileri, izostatik ve termomekanik analizlerle araştırılması. Yüksek Lisans Tezi, Kocaeli Üniversitesi Jeofizik Mühendisliği Bölümü, Kocaeli.
- Bhattacharyya, B. 1967. Some general properties of potential fi elds in space and frequency domain: a review. Geoexplor., 5, 127-143, DOI:10.1016/0016-7142(67)90021-X.
- Ruotoistenmäki, T. 1987. Estimation of depth to potential fi eld sources using the Fourier amplitude spectrum. Geol. Tutkimusk., 340, 84. DOI: 10.13140/RG.2.2.11841.61284.
- Parker, R.L. 1972. The rapid calculation of potential anomalies. Geophys. J. Int., 31, 447-455, DOI:10.1111/j.1365-246X.1973.tb06513.x.
- Oldenburg, D.W. 1974. The inversion and interpretation of gravity anomalies. Geophys., 39, 526-536, DOI:10.1190/1.1440444.
- Blakely, R.J. 1995. Potential theory in gravity and magnetic applications, Cambridge University Press. DOI: 10.1017/CBO9780511549816.
- Gómez-Ortiz, D, Agarwal, B.N. 2005. 3DINVER. M: a MATLAB program to invert the gravity anomaly over a 3D horizontal density interface by Parker–Oldenburg's algorithm. Computers & geosciences, 31(4), 513-520. DOI: 10.1016/j.cageo.2004.11.004.
- Vaníček, P., Tenzer, R., Sjöberg, L.E., Martinec, Z., Featherstone, W.E. 2004. New views of the spherical Bouguer gravity anomaly. Geophysical Journal International, 159(2), 460-472. DOI: 10.1111/j.1365-246X.2004.02435.x.
- Lü, Y., Ni, S., Chen, L., Chen, Q.F. 2017. Pn tomography with Moho depth correction from eastern Europe to western China. Journal of Geophysical Research: Solid Earth, 122(2), 1284-1301. DOI: 10.1002/2016JB013052.
- Kayhan, G., Gülen L. 2017. Türkiye ve civarında kıtasal kabuk kalınlığı araştırması.70th Geological Congress of Turkey, 26-27.
- Pamukçu, O.A., Akçığ, Z., Demirbaş, Ş., Zor, E. 2007. Investigation of crustal thickness in Eastern Anatolia using gravity, magnetic and topographic data. Pure and Applied Geophysics, 164(11), 2345-2358. DOI: 10.1007/s00024-007-0267-7.
- Pamukcu, O., Yurdakul, A. 2008. Isostatic compensation in western Anatolia with estimate of the effective elastic thickness. Turkish Journal of Earth Sciences, 17(3), 545-557.
- Bilim, F., Aydemir, A., Ateş, A., Dolmaz, M.N., Koşaroğlu, S., Erbek, E. 2021. Crustal thickness in the Black Sea and surrounding region, estimated from the gravity data. Marine and Petroleum Geology, 123, 104735. DOI: 10.1016/j.marpetgeo.2020.104735.
- Reguzzoni, M., Sampietro, D. 2015. GEMMA: An Earth crustal model based on GOCE satellite data. International Journal of Applied Earth Observation and Geoinformation, 35, 31-43. DOI: 10.1016/j.jag.2014.04.002.
- Laske, G., Masters, G., Ma, Z., Pasyanos, M.E. 2012. CRUST1. 0: An updated global model of Earth’s crust. Geophys Res Abs, 14, 3743.
Batı İtalya ile Hazar Denizi Doğusu Arasındaki Bölgenin Gravite Tensörleri ve Moho Derinlik Değişimleri
Yıl 2024,
Cilt: 26 Sayı: 77, 218 - 230, 27.05.2024
Fikret Doğru
,
Oya Pamukçu
Öz
İtalya'nın batısından Hazar Denizi'nin doğusuna kadar olan bölgenin kabuk yapısı bu çalışma kapsamında incelenmiştir. Ayrıca bölgenin farklı derecelerdeki gravite tensörleri hesaplanarak hem sığ hem de derin yapının etkisi ortaya konulmuştur. Bu amaçla öncelikle bölgenin küresel serbest hava gravite anomalisi hesaplanmıştır. Bu hesaplama için EGM2008 ve GOCE DIR R4 modellerinin kombinasyonu kullanılmıştır. Daha sonra sadece EGM2008 modeli ve sadece GOCE DIR R4 modeli kullanılarak bölgenin gravite tensörleri ayrı ayrı hesaplanmıştır. Topografik model kullanılarak bölgenin küresel serbest hava anomalisi hesaplanmıştır. Bu topografik modelden elde edilen anomalinin GOCE DIR R4 + EGM2008 birleşik modelinden elde edilen küresel serbest hava anomalisinden çıkarılmasıyla bölgenin küresel Bouguer anomalisi elde edilmiştir. Küresel Bouguer anomalisinin radyal ortalamalı güç spektrumu alınmış ve Moho'nun neden olduğu düşünülen anomali filtrelenmiştir. Bu Moho'nun neden olduğu düşünülen anomaliye ters çözüm uygulanarak tüm bölgeye ait Moho derinlik haritası elde edilmiştir. Elde edilen değerler önceki çalışmalarla karşılaştırılmış ve uyumlu olduğu görülmüştür.
Proje Numarası
2018.KB.FEN.013
Kaynakça
- Dewey, J.F., Bird, J.M. 1970. Mountain belts and the new global tectonics. Journal of Geophysical Research, 75(14), 2625-2647.DOI:10.1029/JB075i014p02625.
- McKenzie, D. 1978. Active tectonics of the Alpine—Himalayan belt: the Aegean Sea and surrounding regions. Geophysical Journal International, 55(1), 217-254. DOI:10.1111/j.1365-246X.1978.tb04759.x.
- Jackson, J., McKenzie, D. 1984. Active tectonics of the Alpine—Himalayan Belt between western Turkey and Pakistan. Geophysical Journal International, 77(1), 185-264. DOI:10.1111/j.1365-246X.1984.tb01931.x.
- Angelier, J. 1978. Tectonic evolution of the Hellenic Arc since the late Miocene. Tectonophysics, 49(1-2), 23-36. DOI: 10.1016/0040-1951(78)90096-3.
- Angelier, J., Lyberis, N., Le Pichon, X., Barrier, E., Huchon, P. 1982. The tectonic development of the Hellenic arc and the Sea of Crete: a synthesis. Tectonophysics, 86(1-3), 159-196. DOI: 10.1016/0040-1951(82)90066-X.
- Anastasakis, G., Kelling, G. 1991. Tectonic connection of the Hellenic and Cyprus arcs and related geotectonic elements. Marine Geology, 97(3-4), 261-277. DOI: 10.1016/0025-3227(91)90120-S.
- Styron, R. 2019. GEMScienceTools/gem-global-active-faults: First release of 2019 (Version 2019.0). Zenodo. DOI:10.5281/zenodo.3376300.
- Dogru, F., Pamukcu, O., Gonenc, T., Yildiz, H. 2018. Lithospheric structure of western Anatolia and the Aegean Sea using GOCE-based gravity field models. Bollettino di Geofisica Teorica ed Applicata, 59(2), 135-160. DOI:10.4430/bgta0231.
- Bruinsma, S.L., Förste, C., Abrikosov, O., Marty, J.C., Rio, M.H., Mulet, S., Bonvalot, S. 2013. The new ESA satellite‐only gravity field model via the direct approach. Geophysical Research Letters, 40(14), 3607-3612. DOI: 10.1002/grl.50716.
- Pavlis, N.K., Holmes, S.A., Kenyon, S.C., Factor, J.K. 2008. An earth gravitational model to degree 2160: EGM2008. EGU general assembly, 10, 13-18.
- Rexer, M., Hirt, C., Claessens, S., Tenzer, R. 2016. Layer-based modelling of the Earth’s gravitational potential up to 10-km scale in spherical harmonics in spherical and ellipsoidal approximation. Surveys in Geophysics, 37(6), 1035-1074. DOI: 10.1007/s10712-016-9382-2.
- Bucha, B., Janák, J. 2013. A MATLAB-based graphical user interface program for computing functionals of the geopotential up to ultra-high degrees and orders. Computers and Geosciences, 56, 186–196. DOI: 10.1016/j.cageo.2013.03.012.
- Spector, A., Grant, F. 1970. Statistical models for interpreting aeromagnetic data, Geophysics, 35, 293–302. DOI: 10.1190/1.1440092.
- Pawlowski, R.S., Hansen, R.O. 1990. Gravity anomaly separation by Wiener filtering. Geophysics, 55(4), 539-548. DOI: 10.1190/1.1442865.
- Pawlowski, R.S. 1994. Green’s equivalent-layer concept in gravity band-pass filter design. Geophysics, 59, 69–76. DOI: 10.1190/1.1443535.
- Sönmez, T. 2016. Doğu Marmara Bölgesinin litosfer dinamiklerinin EGM2008 gravite anomalileri, izostatik ve termomekanik analizlerle araştırılması. Yüksek Lisans Tezi, Kocaeli Üniversitesi Jeofizik Mühendisliği Bölümü, Kocaeli.
- Bhattacharyya, B. 1967. Some general properties of potential fi elds in space and frequency domain: a review. Geoexplor., 5, 127-143, DOI:10.1016/0016-7142(67)90021-X.
- Ruotoistenmäki, T. 1987. Estimation of depth to potential fi eld sources using the Fourier amplitude spectrum. Geol. Tutkimusk., 340, 84. DOI: 10.13140/RG.2.2.11841.61284.
- Parker, R.L. 1972. The rapid calculation of potential anomalies. Geophys. J. Int., 31, 447-455, DOI:10.1111/j.1365-246X.1973.tb06513.x.
- Oldenburg, D.W. 1974. The inversion and interpretation of gravity anomalies. Geophys., 39, 526-536, DOI:10.1190/1.1440444.
- Blakely, R.J. 1995. Potential theory in gravity and magnetic applications, Cambridge University Press. DOI: 10.1017/CBO9780511549816.
- Gómez-Ortiz, D, Agarwal, B.N. 2005. 3DINVER. M: a MATLAB program to invert the gravity anomaly over a 3D horizontal density interface by Parker–Oldenburg's algorithm. Computers & geosciences, 31(4), 513-520. DOI: 10.1016/j.cageo.2004.11.004.
- Vaníček, P., Tenzer, R., Sjöberg, L.E., Martinec, Z., Featherstone, W.E. 2004. New views of the spherical Bouguer gravity anomaly. Geophysical Journal International, 159(2), 460-472. DOI: 10.1111/j.1365-246X.2004.02435.x.
- Lü, Y., Ni, S., Chen, L., Chen, Q.F. 2017. Pn tomography with Moho depth correction from eastern Europe to western China. Journal of Geophysical Research: Solid Earth, 122(2), 1284-1301. DOI: 10.1002/2016JB013052.
- Kayhan, G., Gülen L. 2017. Türkiye ve civarında kıtasal kabuk kalınlığı araştırması.70th Geological Congress of Turkey, 26-27.
- Pamukçu, O.A., Akçığ, Z., Demirbaş, Ş., Zor, E. 2007. Investigation of crustal thickness in Eastern Anatolia using gravity, magnetic and topographic data. Pure and Applied Geophysics, 164(11), 2345-2358. DOI: 10.1007/s00024-007-0267-7.
- Pamukcu, O., Yurdakul, A. 2008. Isostatic compensation in western Anatolia with estimate of the effective elastic thickness. Turkish Journal of Earth Sciences, 17(3), 545-557.
- Bilim, F., Aydemir, A., Ateş, A., Dolmaz, M.N., Koşaroğlu, S., Erbek, E. 2021. Crustal thickness in the Black Sea and surrounding region, estimated from the gravity data. Marine and Petroleum Geology, 123, 104735. DOI: 10.1016/j.marpetgeo.2020.104735.
- Reguzzoni, M., Sampietro, D. 2015. GEMMA: An Earth crustal model based on GOCE satellite data. International Journal of Applied Earth Observation and Geoinformation, 35, 31-43. DOI: 10.1016/j.jag.2014.04.002.
- Laske, G., Masters, G., Ma, Z., Pasyanos, M.E. 2012. CRUST1. 0: An updated global model of Earth’s crust. Geophys Res Abs, 14, 3743.