Araştırma Makalesi
BibTex RIS Kaynak Göster

Çeyrek Taşıt Modelinin Lqr-Bulanık Mantıklı Kontrolcü ile Kontrolü

Yıl 2025, Cilt: 27 Sayı: 79, 15 - 21, 23.01.2025
https://doi.org/10.21205/deufmd.2025277903

Öz

Bu çalışmada iki farklı kontrol yöntemi kullanılarak yeni bir kontrol kuralı geliştirilmiş ve geliştirilen kontrolcü çeyrek taşıt modeline uygulanarak sonuçlar değerlendirilmiştir. Bulanık Mantık kontrol yöntemi ve Lineer Kuadratik Düzenleyici (LQR) kontrol yönteminin avantajları dikkate alınarak yeni bir hibrit denetleyici tasarlanmıştır. LQR denetleyicide kullanılan kontrol kazanç katsayıları bulanık mantık kontrol yöntemi ile belirlenmiştir. Geliştirilen yeni kontrol yasası çeyrek taşıt modeline uygulanmıştır. Sonuçlar kısmında, pasif, sadece bulanık mantıklı kontrolcü ve geliştirilen LQR-Bulanık mantıklı kontrolcü ile elde edilen sonuçlar karşılaştırılmıştır. Geliştirilen kontrol yönteminin tatmin edici olduğu sonuçlardan anlaşılmıştır

Kaynakça

  • [1] Devdutt, M. L. 2014. Fuzzy Logic Control of a Semi-Active Quarter Car System. Int. J. Mech. Ind. Sci. Eng, Vol. 8, p. 163-167, DOI: 10.5281/zenodo.1337025
  • [2] Palanisamy, S., Karuppan, S. 2016. Fuzzy Control of Active Suspension System. Journal of Vibroengineering, Vol. 18 (5), p. 3197-3204. DOI: 10.21595/jve.2016.16699
  • [3] Bhangal, N. S., Raj, K. A. 2016. Fuzzy Control of Vehicle Active Suspension System. International Journal of Mechanical Engineering and Robotics Research, Vol. 5, p. 144. DOI: 10.18178/ijmerr.5.2.144-148
  • [4] El Majdoub, K., Ouadi, H., Touati, A. 2014. LQR Control for Semi-Active Quarter Vehicle Suspension with Magnetorhehological Damper and Bouc-Wen Model. Int. Rev. Modell. Simulat. IREMOS, Vol. 7(4), p. 703-711.
  • [5] Rao, K. D., Kumar, S. 2015. Modeling and Simulation of Quarter Car Semi Active Suspension System Using LQR Controller. Proceedings of the 3rd International Conference on Frontiers of Intelligent Computing: Theory and Applications (FICTA), Vol. 1 p. 441-448. DOI:10.1007/978-3-319-11933-5_48
  • [6] Nagarkar, M. P., Bhalerao, Y. J., Patil, G. J. V., Patil, R. N. Z. 2018. Multi-Objective Optimization of Nonlinear Quarter Car Suspension System–PID and LQR Control, Procedia Manufacturing. Vol. 20, p. 420-427. DOI:10.1016/j.promfg.2018.02.061
  • [7] Gokul. P. S. Malar. M. K. 2019. A Contemporary Adaptive Air Suspension Using LQR Control for Passenger Vehicles, ISA Transactions, Vol. 93, p. 244-254. DOI:10.1016/j.isatra.2019.02.031
  • [8] Uddin, N. 2019. Optimal Control Design of Active Suspension System Based on Quarter Car Model. Jurnal Infotel, Vol. 11, p. 55-61. DOI:10.1007/s40430-020-02552-7
  • [9] Kaleemullah, M., Faris, W, F., Hasbullah, F., 2011. Design of Robust H∞, Fuzzy and LQR Controller for Active Suspension of a Quarter Car Model. 4th International Conference on Mechatronics (ICOM). IEEE, 17-19 May, Kuala Lumpur, 1-6
  • [10] Wei, X., Li, J. Liu, X. 2013. LQR Control Scheme for Active Vehicle Suspension Systems Based on Modal Decomposition. 25th Chinese Control and Decision Conference (CCDC), 25-27 May, Guiyang, China, 3296-3301
  • [11] Bharali, J., Buragohain, M. 2016. A Comparative Analysis of PID, LQR and Fuzzy Logic Controller for Active Suspension System Using 3 Degree of Freedom Quarter Car Model. 2016 IEEE 1st International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES). IEEE, 4-6 July, Delhi, India, 1-5
  • [12] Divekar. A. A. Mahajan, B. D. 2016. Response Optimization and Lqr Based Control for Quarter Car Suspension with Seat-Driver Model. 2016 International Conference on Automatic Control and Dynamic Optimization Techniques (ICACDOT). 9-10 September, Pune, India, 1007-1012
  • [13] Anh, N. T. 2020. Control an Active Suspension System by Using PID and LQR Controller. International Journal of Mechanical and Production Engineering Research and Development Vol. 10, p. 7003-7012. DOI:10.24247/ijmperdjun2020662
  • [14] Taskın, Y., Hacıoğlu Y, 2006, Vibration Suppression ofa Vehicle with Fuzzy Sliding Modes, Proceedings of 5th lnternational Symposiurn on Intelligent Manufacturing, 29-31 May, Sakarya, 1132-1140.
  • [15] Yaren, T. Kizir, S. 2019. LQR Kontrolcü Parametrelerinin Sistem Davranışına Etki Analizi: Çift Çubuklu Ters Sarkaç Sistemi. Konya Mühendislik Bilimleri Dergisi, Vol. 8, p. 175-191. DOI:10.36306/konjes.586958
  • [16] Zhang, J. Zhang W. 2012. LQR Self-Adjusting Based Control for the Planar Double Inverted Pendulum. International Conference on Applied Physics and Industrial Engineering, Vol. 24, p. 1669 – 1676. DOI:10.1016/j.phpro.2012.02.246
  • [17] Zadeh, L. A. 1965, Fuzzy sets. Information and Control, Vol. 8, pp. 338-353.
  • [18] Hacıoğlu, Y. 2004. Bir robotun bulanık mantıklı kayan kipli kontrolü, Yüksek lisans tezi, Makine Mühendisliği, Fen Bilimleri Enstitüsü, İstanbul Üniversitesi, İstanbul, Türkiye.

Lqr-Fuzzy Logic Control of a Quarter Vehicle Model

Yıl 2025, Cilt: 27 Sayı: 79, 15 - 21, 23.01.2025
https://doi.org/10.21205/deufmd.2025277903

Öz

In this study, a new control rule was developed using two different control methods, and the results were discussed by applying the developed controller to the quarter vehicle model. A new hybrid controller was designed by considering the advantages of Fuzzy Logic control method and Linear Quadratic Regulator (LQR) control method. Control gain coefficients used in LQR controller were determined by fuzzy logic control method. The developed new controller has been applied to the quarter vehicle model. In the results, control with only Fuzzy Logic controller and developed LQR-Fuzzy Logic controller were compared. It was understood from the results that the developed control method was satisfactory.

Kaynakça

  • [1] Devdutt, M. L. 2014. Fuzzy Logic Control of a Semi-Active Quarter Car System. Int. J. Mech. Ind. Sci. Eng, Vol. 8, p. 163-167, DOI: 10.5281/zenodo.1337025
  • [2] Palanisamy, S., Karuppan, S. 2016. Fuzzy Control of Active Suspension System. Journal of Vibroengineering, Vol. 18 (5), p. 3197-3204. DOI: 10.21595/jve.2016.16699
  • [3] Bhangal, N. S., Raj, K. A. 2016. Fuzzy Control of Vehicle Active Suspension System. International Journal of Mechanical Engineering and Robotics Research, Vol. 5, p. 144. DOI: 10.18178/ijmerr.5.2.144-148
  • [4] El Majdoub, K., Ouadi, H., Touati, A. 2014. LQR Control for Semi-Active Quarter Vehicle Suspension with Magnetorhehological Damper and Bouc-Wen Model. Int. Rev. Modell. Simulat. IREMOS, Vol. 7(4), p. 703-711.
  • [5] Rao, K. D., Kumar, S. 2015. Modeling and Simulation of Quarter Car Semi Active Suspension System Using LQR Controller. Proceedings of the 3rd International Conference on Frontiers of Intelligent Computing: Theory and Applications (FICTA), Vol. 1 p. 441-448. DOI:10.1007/978-3-319-11933-5_48
  • [6] Nagarkar, M. P., Bhalerao, Y. J., Patil, G. J. V., Patil, R. N. Z. 2018. Multi-Objective Optimization of Nonlinear Quarter Car Suspension System–PID and LQR Control, Procedia Manufacturing. Vol. 20, p. 420-427. DOI:10.1016/j.promfg.2018.02.061
  • [7] Gokul. P. S. Malar. M. K. 2019. A Contemporary Adaptive Air Suspension Using LQR Control for Passenger Vehicles, ISA Transactions, Vol. 93, p. 244-254. DOI:10.1016/j.isatra.2019.02.031
  • [8] Uddin, N. 2019. Optimal Control Design of Active Suspension System Based on Quarter Car Model. Jurnal Infotel, Vol. 11, p. 55-61. DOI:10.1007/s40430-020-02552-7
  • [9] Kaleemullah, M., Faris, W, F., Hasbullah, F., 2011. Design of Robust H∞, Fuzzy and LQR Controller for Active Suspension of a Quarter Car Model. 4th International Conference on Mechatronics (ICOM). IEEE, 17-19 May, Kuala Lumpur, 1-6
  • [10] Wei, X., Li, J. Liu, X. 2013. LQR Control Scheme for Active Vehicle Suspension Systems Based on Modal Decomposition. 25th Chinese Control and Decision Conference (CCDC), 25-27 May, Guiyang, China, 3296-3301
  • [11] Bharali, J., Buragohain, M. 2016. A Comparative Analysis of PID, LQR and Fuzzy Logic Controller for Active Suspension System Using 3 Degree of Freedom Quarter Car Model. 2016 IEEE 1st International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES). IEEE, 4-6 July, Delhi, India, 1-5
  • [12] Divekar. A. A. Mahajan, B. D. 2016. Response Optimization and Lqr Based Control for Quarter Car Suspension with Seat-Driver Model. 2016 International Conference on Automatic Control and Dynamic Optimization Techniques (ICACDOT). 9-10 September, Pune, India, 1007-1012
  • [13] Anh, N. T. 2020. Control an Active Suspension System by Using PID and LQR Controller. International Journal of Mechanical and Production Engineering Research and Development Vol. 10, p. 7003-7012. DOI:10.24247/ijmperdjun2020662
  • [14] Taskın, Y., Hacıoğlu Y, 2006, Vibration Suppression ofa Vehicle with Fuzzy Sliding Modes, Proceedings of 5th lnternational Symposiurn on Intelligent Manufacturing, 29-31 May, Sakarya, 1132-1140.
  • [15] Yaren, T. Kizir, S. 2019. LQR Kontrolcü Parametrelerinin Sistem Davranışına Etki Analizi: Çift Çubuklu Ters Sarkaç Sistemi. Konya Mühendislik Bilimleri Dergisi, Vol. 8, p. 175-191. DOI:10.36306/konjes.586958
  • [16] Zhang, J. Zhang W. 2012. LQR Self-Adjusting Based Control for the Planar Double Inverted Pendulum. International Conference on Applied Physics and Industrial Engineering, Vol. 24, p. 1669 – 1676. DOI:10.1016/j.phpro.2012.02.246
  • [17] Zadeh, L. A. 1965, Fuzzy sets. Information and Control, Vol. 8, pp. 338-353.
  • [18] Hacıoğlu, Y. 2004. Bir robotun bulanık mantıklı kayan kipli kontrolü, Yüksek lisans tezi, Makine Mühendisliği, Fen Bilimleri Enstitüsü, İstanbul Üniversitesi, İstanbul, Türkiye.
Toplam 18 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Dinamikler, Titreşim ve Titreşim Kontrolü
Bölüm Araştırma Makalesi
Yazarlar

Ömür Can Özgüney 0000-0003-4778-9531

Erken Görünüm Tarihi 15 Ocak 2025
Yayımlanma Tarihi 23 Ocak 2025
Gönderilme Tarihi 15 Ekim 2023
Kabul Tarihi 16 Mart 2024
Yayımlandığı Sayı Yıl 2025 Cilt: 27 Sayı: 79

Kaynak Göster

APA Özgüney, Ö. C. (2025). Lqr-Fuzzy Logic Control of a Quarter Vehicle Model. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, 27(79), 15-21. https://doi.org/10.21205/deufmd.2025277903
AMA Özgüney ÖC. Lqr-Fuzzy Logic Control of a Quarter Vehicle Model. DEUFMD. Ocak 2025;27(79):15-21. doi:10.21205/deufmd.2025277903
Chicago Özgüney, Ömür Can. “Lqr-Fuzzy Logic Control of a Quarter Vehicle Model”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi 27, sy. 79 (Ocak 2025): 15-21. https://doi.org/10.21205/deufmd.2025277903.
EndNote Özgüney ÖC (01 Ocak 2025) Lqr-Fuzzy Logic Control of a Quarter Vehicle Model. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 27 79 15–21.
IEEE Ö. C. Özgüney, “Lqr-Fuzzy Logic Control of a Quarter Vehicle Model”, DEUFMD, c. 27, sy. 79, ss. 15–21, 2025, doi: 10.21205/deufmd.2025277903.
ISNAD Özgüney, Ömür Can. “Lqr-Fuzzy Logic Control of a Quarter Vehicle Model”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 27/79 (Ocak 2025), 15-21. https://doi.org/10.21205/deufmd.2025277903.
JAMA Özgüney ÖC. Lqr-Fuzzy Logic Control of a Quarter Vehicle Model. DEUFMD. 2025;27:15–21.
MLA Özgüney, Ömür Can. “Lqr-Fuzzy Logic Control of a Quarter Vehicle Model”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, c. 27, sy. 79, 2025, ss. 15-21, doi:10.21205/deufmd.2025277903.
Vancouver Özgüney ÖC. Lqr-Fuzzy Logic Control of a Quarter Vehicle Model. DEUFMD. 2025;27(79):15-21.

Dokuz Eylül Üniversitesi, Mühendislik Fakültesi Dekanlığı Tınaztepe Yerleşkesi, Adatepe Mah. Doğuş Cad. No: 207-I / 35390 Buca-İZMİR.