Mandibular simfiz fraktürlerinin farklı plak sistemleriyle fiksasyonunda mandibular kemikte ve fiksasyon sistemlerinde oluşan streslerin incelenmesi
Yıl 2024,
Cilt: 25 Sayı: 1, 1 - 5, 28.03.2024
Fatma Eriş Derkuş
,
Utku Nezih Yılmaz
Proje Numarası
DİŞ.20.016
Kaynakça
- 1. Chrcanovic BR. Fixation of mandibular angle fractures: in vitro biomechanical assessments and computer-based studies. Oral Maxillofac Surg. 2013;17(4):251-268. doi: 10.1007/s10006-012-0367-0
- 2. Adekeye EO. The pattern of fractures of the facial skeleton in Kaduna, Nigeria. A survey of 1,447 cases. Oral Surg, Oral Med Oral Pathol. 1980;49(6):491-495. doi: 10.1016/0030-4220(80)90068-7
- 3. Scott RA, Teo N, Perry M. Displacement of mandibular fractures: is there a correlation with sensory loss and recovery? Int J Oral Maxillofac Surg. 2014;43(5):555-558. doi: 10.1016/j.ijom.2013.11.007
- 4. Sverzut CE, Lucas MA, Sverzut AT, et al. Bone repair in mandibular body osteotomy after using 2.0 miniplate system - Histological and histometric analysis in dogs. Int J Exp Pathol. 2008;89(2):91-97. doi: 10.1111/j.1365-2613.2007.00569.x
- 5. Suer BT, Kocyigit ID, Kaman S, Tuz HH, Tekin U, Atil F. Biomechanical evaluation of a new design titanium miniplate for the treatment of mandibular angle fractures. Int J Oral Maxillofac Surg. 2014;43(7):841-845. doi: 10.1016/j.ijom.2014.01.011
- 6. Cheung LK, Yip IHS, Chow RLK. Stability and morbidity of Le Fort I osteotomy with bioresorbable fixation: a randomized controlled trial. Int J Oral Maxillofac Surg. 2008;37(3):232-241. doi: 10.1016/j.ijom.2007.09.169
- 7. Kim SH, Chang SH, Son DS. Finite element analysis of the effect of bending stiffness and contact condition of composite bone plates with simple rectangular cross-section on the bio-mechanical behaviour of fractured long bones. Compos Part B Eng. 2011;42(6):1731-1738. doi: 10.1016/j.compositesb.2011.03.001
- 8. Kurtz SM, Day J, Ong K. Isoelastic Polyaryletheretherketone Implants for Total Joint Replacement. In: Kurtz SM, ed. PEEK Biomaterials Handbook. Elsevier: 2012:221-242. doi: 10.1016/B978-1-4377-4463-7.10014-4
- 9. Diker N, Bayram B. Feasibility of carbon-fiber-reinforced polymer fixation plates for treatment of atrophic mandibular fracture: A finite element method. J Cranio-Maxillofac Surg. 2018;46(12):2182-2189. doi: 10.1016/j.jcms.2018.09.030
- 10. Motoyoshi M, Ueno S, Okazaki K, Shimizu N. Bone stress for a mini-implant close to the roots of adjacent teeth - 3D finite element analysis. Int J Oral Maxillofac Surg. 2009;38(4):363-368. doi: 10.1016/j.ijom.2009.02.011
- 11. Vajgel A, Camargo IB, Willmersdorf RB, De Melo TM, Filho JRL, De Holanda Vasconcellos RJ. Comparative finite element analysis of the biomechanical stability of 2.0 fixation plates in atrophic mandibular fractures. J Oral Maxillofac Surg. 2013;71(2):335-342. doi: 10.1016/j.joms.2012.09.019
- 12. Lovald ST, Wagner JD, Baack B. Biomechanical optimization of bone plates used in rigid fixation of mandibular fractures. J Oral Maxillofac Surg. 2009;67(5):973-985. doi: 10.1016/j.joms.2008.12.032
- 13. Green S. Compounds and composite materials. In: Kurtz SM, ed. PEEK Biomaterials Handbook. Elsevier: 2019:27-51. doi: 10.1016/B978-0-12-812524-3.00003-X
- 14. Wolff J. The Law of Bone Remodelling. Springer-Verlag: 1986. doi:10.1007/978-3-642-71031-5
- 15. Tarallo L, Mugnai R, Adani R, Zambianchi F, Catani F. A new volar plate made of carbon-fiber-reinforced polyetheretherketon for distal radius fracture: analysis of 40 cases. J Orthop Traumatol. 2014;15(4):277-283. doi: 10.1007/s10195-014-0311-1
- 16. Schliemann B, Hartensuer R, Koch T, et al. Treatment of proximal humerus fractures with a CFR-PEEK plate: 2-year results of a prospective study and comparison to fixation with a conventional locking plate. J Shoulder Elb Surg. 2015;24(8):1282-1288. doi: 10.1016/j.jse.2014.12.028
- 17. Avci T, Omezli MM, Torul D. Investigation of the biomechanical stability of Cfr-PEEK in the treatment of mandibular angulus fractures by finite element analysis. J Stomatol Oral Maxillofac Surg. 2022;123(6):610-615. doi: 10.1016/j.jormas.2022.05.008
- 18. Schliemann B, Seifert R, Theisen C, et al. PEEK versus titanium locking plates for proximal humerus fracture fixation: a comparative biomechanical study in two- and three-part fractures. Arch Orthop Trauma Surg. 2017;137(1):63-71. doi: 10.1007/s00402-016-2620-8
Investigation of stress occurring on fixation systems and mandibular bone in fixation of mandible symphysis fractures with different plate systems
Yıl 2024,
Cilt: 25 Sayı: 1, 1 - 5, 28.03.2024
Fatma Eriş Derkuş
,
Utku Nezih Yılmaz
Öz
Aims: The aim of this study is to investigate the effectiveness of CFR-PEEK plates by comparing titanium plates with CFR-PEEK plates in the fixation of mandibular symphysis fractures.
Methods: In the study, a model that imitates the mandible was obtained with the finite element analysis method. A fracture line was created in the symphysis on the model, and a double mini-plate was applied to this line with the Champy method. Comparisons were made by assigning CFR-PEEK and titanium material properties to the plates.
Results: Von Mises stresses on screws and plates were found to be lower than those on titanium plates when CFR-PEEK plates were applied. When the stresses in the screws were examined, it was observed that the highest stresses occurred in the screws adjacent to the fracture line.
Conclusion: CFR-PEEK materials provide a more stable fixation by reducing the stresses in the fixation systems and may be a good alternative to titanium materials with their advantageous properties.
Destekleyen Kurum
Dicle Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü tarafından DİŞ.20.016 proje numarasıyla desteklenmiştir.
Proje Numarası
DİŞ.20.016
Kaynakça
- 1. Chrcanovic BR. Fixation of mandibular angle fractures: in vitro biomechanical assessments and computer-based studies. Oral Maxillofac Surg. 2013;17(4):251-268. doi: 10.1007/s10006-012-0367-0
- 2. Adekeye EO. The pattern of fractures of the facial skeleton in Kaduna, Nigeria. A survey of 1,447 cases. Oral Surg, Oral Med Oral Pathol. 1980;49(6):491-495. doi: 10.1016/0030-4220(80)90068-7
- 3. Scott RA, Teo N, Perry M. Displacement of mandibular fractures: is there a correlation with sensory loss and recovery? Int J Oral Maxillofac Surg. 2014;43(5):555-558. doi: 10.1016/j.ijom.2013.11.007
- 4. Sverzut CE, Lucas MA, Sverzut AT, et al. Bone repair in mandibular body osteotomy after using 2.0 miniplate system - Histological and histometric analysis in dogs. Int J Exp Pathol. 2008;89(2):91-97. doi: 10.1111/j.1365-2613.2007.00569.x
- 5. Suer BT, Kocyigit ID, Kaman S, Tuz HH, Tekin U, Atil F. Biomechanical evaluation of a new design titanium miniplate for the treatment of mandibular angle fractures. Int J Oral Maxillofac Surg. 2014;43(7):841-845. doi: 10.1016/j.ijom.2014.01.011
- 6. Cheung LK, Yip IHS, Chow RLK. Stability and morbidity of Le Fort I osteotomy with bioresorbable fixation: a randomized controlled trial. Int J Oral Maxillofac Surg. 2008;37(3):232-241. doi: 10.1016/j.ijom.2007.09.169
- 7. Kim SH, Chang SH, Son DS. Finite element analysis of the effect of bending stiffness and contact condition of composite bone plates with simple rectangular cross-section on the bio-mechanical behaviour of fractured long bones. Compos Part B Eng. 2011;42(6):1731-1738. doi: 10.1016/j.compositesb.2011.03.001
- 8. Kurtz SM, Day J, Ong K. Isoelastic Polyaryletheretherketone Implants for Total Joint Replacement. In: Kurtz SM, ed. PEEK Biomaterials Handbook. Elsevier: 2012:221-242. doi: 10.1016/B978-1-4377-4463-7.10014-4
- 9. Diker N, Bayram B. Feasibility of carbon-fiber-reinforced polymer fixation plates for treatment of atrophic mandibular fracture: A finite element method. J Cranio-Maxillofac Surg. 2018;46(12):2182-2189. doi: 10.1016/j.jcms.2018.09.030
- 10. Motoyoshi M, Ueno S, Okazaki K, Shimizu N. Bone stress for a mini-implant close to the roots of adjacent teeth - 3D finite element analysis. Int J Oral Maxillofac Surg. 2009;38(4):363-368. doi: 10.1016/j.ijom.2009.02.011
- 11. Vajgel A, Camargo IB, Willmersdorf RB, De Melo TM, Filho JRL, De Holanda Vasconcellos RJ. Comparative finite element analysis of the biomechanical stability of 2.0 fixation plates in atrophic mandibular fractures. J Oral Maxillofac Surg. 2013;71(2):335-342. doi: 10.1016/j.joms.2012.09.019
- 12. Lovald ST, Wagner JD, Baack B. Biomechanical optimization of bone plates used in rigid fixation of mandibular fractures. J Oral Maxillofac Surg. 2009;67(5):973-985. doi: 10.1016/j.joms.2008.12.032
- 13. Green S. Compounds and composite materials. In: Kurtz SM, ed. PEEK Biomaterials Handbook. Elsevier: 2019:27-51. doi: 10.1016/B978-0-12-812524-3.00003-X
- 14. Wolff J. The Law of Bone Remodelling. Springer-Verlag: 1986. doi:10.1007/978-3-642-71031-5
- 15. Tarallo L, Mugnai R, Adani R, Zambianchi F, Catani F. A new volar plate made of carbon-fiber-reinforced polyetheretherketon for distal radius fracture: analysis of 40 cases. J Orthop Traumatol. 2014;15(4):277-283. doi: 10.1007/s10195-014-0311-1
- 16. Schliemann B, Hartensuer R, Koch T, et al. Treatment of proximal humerus fractures with a CFR-PEEK plate: 2-year results of a prospective study and comparison to fixation with a conventional locking plate. J Shoulder Elb Surg. 2015;24(8):1282-1288. doi: 10.1016/j.jse.2014.12.028
- 17. Avci T, Omezli MM, Torul D. Investigation of the biomechanical stability of Cfr-PEEK in the treatment of mandibular angulus fractures by finite element analysis. J Stomatol Oral Maxillofac Surg. 2022;123(6):610-615. doi: 10.1016/j.jormas.2022.05.008
- 18. Schliemann B, Seifert R, Theisen C, et al. PEEK versus titanium locking plates for proximal humerus fracture fixation: a comparative biomechanical study in two- and three-part fractures. Arch Orthop Trauma Surg. 2017;137(1):63-71. doi: 10.1007/s00402-016-2620-8