Araştırma Makalesi
BibTex RIS Kaynak Göster

DEPOLAMA YERİ ATAMA PROBLEMLERİ İÇİN VBA İLE MACAR ALGORİTMASI UYGULAMASI

Yıl 2024, , 1 - 15, 20.12.2023
https://doi.org/10.31671/doujournal.1202310

Öz

Üretim ve lojistik sistemlerinin yönetilmesinde depolama yeri atama problemleri önem arz etmektedir. Geliştirilmiş bir depolama yeri atama politikası, ambarı iyileştirmenin anahtarıdır. Depolama Yeri Atama Problemi (SLAP), ürünlerin bir depolama alanına tahsisi ve malzeme işleme maliyetlerinin veya depolama alanı kullanımının optimizasyonu ile ilgilidir. Depolama yeri atama problemleri Macar yöntemi ile pratik bir şekilde çözülebilir. Atama modellerinde amaç, etkinliği maksimum kılmak için kaynak kullanımının bire bir dağıtımını sağlamaktır. Ancak problem boyutu arttıkça en iyi sonuçların bulunması da oldukça zordur. Bu çalışmanın amacı, bir imalat atölyesinde var olan ambar yer gözlerine (adreslerine) yarı mamullerin montaj hattına olan taşıma süresini minimum kılacak şekilde atanmasıdır. Bu bağlamda, depolama yeri atama problemini çözülmesi için Macar Algoritmasını kullanarak MS Excel Visual Basic Application’da program geliştirilmiştir. Elde edilen sonuçlara göre, Macar Algoritması kullanılarak planlanan atama ile 3302,55 metre/saat’lik taşıma gerçekleştirilmiştir. Bu çalışma sayesinde, depolama yeri atama problemlerinin çözümüne MS Excel Visual Basic Application’da geliştirilen program yardımıyla ışık tutulacaktır.

Kaynakça

  • Brynzér, H., Johansson, M. I. (1996). Storage location assignment: using the product structure to reduce order picking times. International Journal of Production Economics, 46, 595-603.
  • Chopra, S., Notarstefano, G., Rice, M., & Egerstedt, M. (2017). A distributed version of the Hungarian method for multirobot assignment. IEEE Transactions on Robotics, 33(4), 932-947.
  • Dhanasekar, S., Parthiban, V., & Gururaj, A. D. M. (2020). Improved hungarian method to solve fuzzy assignment problem and fuzzy traveling salesman problem. Advances in Mathematics: Scientific Journal, 9(11), 9417–9427.
  • Dutta, J., & Pal, S. C., (2015). A note on hungarian method for solving assignment problem. Journal of Information and Optimization Sciences, 36(5), 451- 459.
  • Edis, E. B., Uzun Araz, O., Eski, O., & Sancar Edis, R. (2022). Storage location assignment of steel coils in a manufacturing company: an integer linear programming model and a greedy randomized adaptive search procedure. TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(1), 67-109.
  • Elsisy, M. A., Elsaadany, A. S., & El Sayed, M. A., (2020). Using interval operations in the Hungarian method to solve the fuzzy assignment problem and its application in the rehabilitation problem of valuable buildings in Egypt. Complexity, Hindawi, 1-11.
  • Frazelle, E., Sojo, R., Esquivel, H., & Álvaro José Hurtado S., (2007). Logística de almacenamiento y manejo de materiales de clase mundial. Grupo Editorial Norma, Bogotá, Spain.
  • Gu, J., Goetschalckx, M., & McGinnis, L. F., (2007). Research on warehouse operation: A comprehensive review. European Journal of Operational Research, 177(1), 1-21.
  • Gu, J., Goetschalckx, M., & McGinnis, L. F., (2010). Solving the forward-reserve allocation problem in warehouse order picking systems. Journal of the Operational Research Society, 61(6), 1013-1021.
  • Kahveci, M., & Gidersoy, B., (2007). İşletme yönetiminde maliyet-kar hedeflerine yönelik atama modelleri ve macar algoritması tekniğiyle analitik bir yaklaşım. Sosyal Bilimler Dergisi, 2, 93-105.
  • Kofler, M. (2014). Optimising the storage location assignment problem under dynamic conditions optimising the storage location assignment problem under dynamic conditions, (Yayınlanmamış doktora tezi). Johannes Kepler Universitat, Technisch-Naturwissenschaftliche Fakultät, Linz.
  • Kuhn, H. W., (1955). The Hungarian method for the assignment problem, Naval Research Logistics, Quarterly, 2, 83-97.
  • Kutucu, H., & Durgut, R., (2018). Silah hedef atama problemi için tavlama benzetimli bir hibrit yapay arı kolonisi algoritması. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 22, 263-269.
  • Leon, J. F., Li, Y., Peyman, M., Calvet, L., & Juan, A. A. (2023). A Discrete-Event Simheuristic for Solving a Realistic Storage Location Assignment Problem. Mathematics, 11(7), 1577.
  • Liu, M. (2022). Research on the storage location assignment problem in robotic mobile fulfillment systems based on association rules. Frontiers in Economics and Management, 3(3), 110-125.
  • Munkres, J., (1957). Algorithms for the assignment and transportation problems, Journal of the Society for Industrial and Applied Mathematics, 5(1), 32-38.
  • Öner, A., Ülengin, F., (2010). Atama problemi için yeni bir çözüm yaklaşımı. İtüdergisi/D, 2(1), 73-79. Öztürk, A., (2016). Yöneylem araştırması. Bursa: Ekin Basım Yayın Dağıtım.
  • Solaja, O., Abiodun, J., Ekpudu, J., Abioro, M., & Akinbola, O. (2020). Assignment problem and its application in Nigerian institutions: Hungarian method approach. International Journal of Applied Operational Research, 10(1), 1- 9.

IMPLEMENTATION OF HUNGARIAN ALGORITHM VIA VBA FOR STORAGE ASSIGNMENT PROBLEMS

Yıl 2024, , 1 - 15, 20.12.2023
https://doi.org/10.31671/doujournal.1202310

Öz

Storage location assignment problems are important in the management of production and logistics systems and an improved storage allocation policy is key to improving the warehouse. The Storage location Assignment Problem (SLAP) deals with the allocation of products to a storage area and the optimization of material handling costs or storage space utilization. Storage location assignment problems can be solved practically with the Hungarian method. In assignment models, the goal is to provide a one-to-one distribution of resource usage to maximize efficiency. However, as the problem size increases, it is very difficult to find the best results. The purpose of the present study was to assign the semifinished products to the warehouse floor cells (addresses) existing in a manufacturing workshop in a way that minimizes the transportation time to the assembly line. In this context, a program was developed in MS Excel Visual Basic Application using Hungarian Algorithm to solve the storage location assignment problem. According to the results obtained, 3302.55 meters/hour transport was carried out using the planned assignment via the Hungarian Algorithm. According to the findings of the present study, the storage location assignment problems will be resolved with the help of the developed program in MS Excel Visual Basic Application.

Kaynakça

  • Brynzér, H., Johansson, M. I. (1996). Storage location assignment: using the product structure to reduce order picking times. International Journal of Production Economics, 46, 595-603.
  • Chopra, S., Notarstefano, G., Rice, M., & Egerstedt, M. (2017). A distributed version of the Hungarian method for multirobot assignment. IEEE Transactions on Robotics, 33(4), 932-947.
  • Dhanasekar, S., Parthiban, V., & Gururaj, A. D. M. (2020). Improved hungarian method to solve fuzzy assignment problem and fuzzy traveling salesman problem. Advances in Mathematics: Scientific Journal, 9(11), 9417–9427.
  • Dutta, J., & Pal, S. C., (2015). A note on hungarian method for solving assignment problem. Journal of Information and Optimization Sciences, 36(5), 451- 459.
  • Edis, E. B., Uzun Araz, O., Eski, O., & Sancar Edis, R. (2022). Storage location assignment of steel coils in a manufacturing company: an integer linear programming model and a greedy randomized adaptive search procedure. TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(1), 67-109.
  • Elsisy, M. A., Elsaadany, A. S., & El Sayed, M. A., (2020). Using interval operations in the Hungarian method to solve the fuzzy assignment problem and its application in the rehabilitation problem of valuable buildings in Egypt. Complexity, Hindawi, 1-11.
  • Frazelle, E., Sojo, R., Esquivel, H., & Álvaro José Hurtado S., (2007). Logística de almacenamiento y manejo de materiales de clase mundial. Grupo Editorial Norma, Bogotá, Spain.
  • Gu, J., Goetschalckx, M., & McGinnis, L. F., (2007). Research on warehouse operation: A comprehensive review. European Journal of Operational Research, 177(1), 1-21.
  • Gu, J., Goetschalckx, M., & McGinnis, L. F., (2010). Solving the forward-reserve allocation problem in warehouse order picking systems. Journal of the Operational Research Society, 61(6), 1013-1021.
  • Kahveci, M., & Gidersoy, B., (2007). İşletme yönetiminde maliyet-kar hedeflerine yönelik atama modelleri ve macar algoritması tekniğiyle analitik bir yaklaşım. Sosyal Bilimler Dergisi, 2, 93-105.
  • Kofler, M. (2014). Optimising the storage location assignment problem under dynamic conditions optimising the storage location assignment problem under dynamic conditions, (Yayınlanmamış doktora tezi). Johannes Kepler Universitat, Technisch-Naturwissenschaftliche Fakultät, Linz.
  • Kuhn, H. W., (1955). The Hungarian method for the assignment problem, Naval Research Logistics, Quarterly, 2, 83-97.
  • Kutucu, H., & Durgut, R., (2018). Silah hedef atama problemi için tavlama benzetimli bir hibrit yapay arı kolonisi algoritması. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 22, 263-269.
  • Leon, J. F., Li, Y., Peyman, M., Calvet, L., & Juan, A. A. (2023). A Discrete-Event Simheuristic for Solving a Realistic Storage Location Assignment Problem. Mathematics, 11(7), 1577.
  • Liu, M. (2022). Research on the storage location assignment problem in robotic mobile fulfillment systems based on association rules. Frontiers in Economics and Management, 3(3), 110-125.
  • Munkres, J., (1957). Algorithms for the assignment and transportation problems, Journal of the Society for Industrial and Applied Mathematics, 5(1), 32-38.
  • Öner, A., Ülengin, F., (2010). Atama problemi için yeni bir çözüm yaklaşımı. İtüdergisi/D, 2(1), 73-79. Öztürk, A., (2016). Yöneylem araştırması. Bursa: Ekin Basım Yayın Dağıtım.
  • Solaja, O., Abiodun, J., Ekpudu, J., Abioro, M., & Akinbola, O. (2020). Assignment problem and its application in Nigerian institutions: Hungarian method approach. International Journal of Applied Operational Research, 10(1), 1- 9.
Toplam 18 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular İşletme
Bölüm Araştırma Makalesi
Yazarlar

Şahin İnanç 0000-0001-7739-3752

Arzu Eren Şenaras 0000-0002-3862-4551

Onur Mesut Şenaras 0000-0002-4295-801X

Yayımlanma Tarihi 20 Aralık 2023
Gönderilme Tarihi 10 Kasım 2022
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA İnanç, Ş., Eren Şenaras, A., & Şenaras, O. M. (2023). DEPOLAMA YERİ ATAMA PROBLEMLERİ İÇİN VBA İLE MACAR ALGORİTMASI UYGULAMASI. Doğuş Üniversitesi Dergisi, 25(1), 1-15. https://doi.org/10.31671/doujournal.1202310