Araştırma Makalesi
BibTex RIS Kaynak Göster

Faz Kaydırıcı Transformatörlerin Dinamik Gerilim Kararlılığına Etkileri

Yıl 2018, Cilt:6 Sayı:2 (2018) (Özel Sayı: IMCOFE 2017), 469 - 480, 06.04.2018

Öz

Günümüzde elektrik enerjisine olan
talebin sürekli artması ve gelişen teknoloji ile birlikte güç sisteminde
yapısal değişiklikler olmaktadır. Ayrıca güç sistemleri üzerinde sürekli değişiklikler
olmaktadır. Bu değişiklikler, ilave sistemler olduğu gibi ek cihazlar
bakımından da olmaktadır. Bu durumda sistemin yapısı değiştiği için kararlılık
değerleri de değişebilmektedir. Oysa güç sisteminin dengeli bir çalışma
durumunda olması ve bozucu bir etki sonrası tekrar eski haline dönmesi istenir.
Bunun sonucunda, gerilim kararlılığı ve gerilim çökmesi olayları güç
sistemlerinin kararlı ve güvenilir bir şekilde işletilmesi konusunu ortaya
çıkarmıştır. Güç sisteminin kararlılık sınırlarının tespiti açısından bu
analizler önemlidir. 
Bu çalışmada, Faz Kaydırıcı
Transformatör (FKT), IEEE’nin 6 baralı güç sistemine ilave edilerek analizler
yapılmıştır. İlk olarak sistemde yük akışı yapılarak FKT’ün etkileri
incelenmiştir. Daha sonra sürekli yük akışı yapılarak sistemin kararlılık
sınırları belirlenmiştir. Son olarak ise güç sistemlerinde istenmeyen bir durum
olan kısa devre oluşturularak FKT’nin çeşitli faz açılarındaki etkileri
araştırılmıştır. Analizler, Güç Sistemleri Analizi Programı (PSAT) ile
gerçekleştirilmiştir. Yük akışı sonucunda, FKT’ün faz değeri değiştirilerek
hattan akan gücün değeri ve yönü kontrol edilebileceği bu sistem üzerinde
gözlemlenmiştir. Ayrıca FKT’ün kayıplar üzerinde de etkili olduğu görülmüştür.
Sürekli yük akışında sonucunda sistemden yük baralarından çekilebilecek
maksimum gücün ve baraların kritik gerilim değerlerinin de benzer şekilde
değiştiği gözlemlenmiştir. Son olarak FKT’nin bağlandığı barada arıza
oluşturulup bu arıza belli bir zaman sonra temizlenmiştir. Arıza sonrası bara
gerilimleri yaklaşık olarak kendi değerlerine dönmelerine rağmen tüm bara
gerilimlerinde dalgalanmalar gözlemlenmiştir.

Kaynakça

  • [1] G. Verbič, M. Pantoš, and F. Gubina, “On voltage collapse and apparent-power losses,” Electric power systems research, vol. 76, no. 9, pp. 760-767, 2006.
  • [2] J. Verboomen, D. Van Hertem, P.H. Schavemaker, W.L. Kling and R. Belmans, “Phase shifting transformers: principles and applications,” In Future Power Systems, 2005 International Conference on IEEE, pp. 6.
  • [3] IEEE Power Engineering Society, “IEEE Guide for the Application, Specification, and Testing of Phase-Shifting Transformers,” C57.135, 2002.
  • [4] R. Tirupathi, et al., "Application of Phase Shifting Transformer in Indian Power System," International Journal of Computer and Electrical Engineering, vol. 4, no. 2, pp. 242, 2012.
  • [5] R.M. Castro, F.M. Batista and J.M. Pinto, “Application of FACTS in the Portuguese transmission system: investigation on the use of phase-shift transformers,” In Power Tech Proceedings, 2001 IEEE Porto, vol. 4, pp. 4, IEEE.
  • [6] J.K. Bladow and A.H.Montoya, “Experiences with parallel EHV phase shifting transformers,” IEEE Transactions on Power Delivery, vol. 6, no.3, pp. 1096-1100, 1991.
  • [7] P. Moore and P. Ashmole, “Flexible AC transmission systems. Part 4: Advanced FACTS controllers,” Power Engineering Journal, vol. 12, no. 2, pp. 95-100, 1998.
  • [8] H. Saadat, Power System Analysis. McGraw-Hill, Singapore, 2004.
  • [9] A. El Hraiech, K. Ben-Kilani, and M. Elleuch, “Control of parallel EHV interconnection lines using Phase Shifting Transformers,” In Systems, Signals and Devices (SSD), 2014 11th International Multi-Conference on IEEE, pp. 1-7.
  • [10] L. Flavio GM, et al. "Phase shifter placement in large-scale systems via mixed integer linear programming," IEEE Transactions on Power Systems, vol. 18, no. 3, pp. 1029-1034, 2003.
  • [11] J.A. Momoh, J.Z. Zhu, G.D. Boswell and S. Hoffman, “Power system security enhancement by OPF with phase shifter,” IEEE transactions on power systems, vol. 16, no. 2, pp. 287-293, 2001.
  • [12] D. Van Hertem, J. Rimez and R. Belmans, “Power flow controlling devices as a smart and independent grid investment for flexible grid operations: Belgian case study,” IEEE Transactions on Smart Grid, vol. 4, no.3, pp. 1656-1664, 2013.
  • [13] L. Contreras-Aguilar, N. García, M.A. Islas-Martínez and R. Adame-Ortiz, “Implementation of a VFT model in PSS/E suitable for power flow and transient stability simulations,” In Power and Energy Society General Meeting, 2012 IEEE, pp. 1-8.
  • [14] S. Sithole, N. Mbuli and J.H.C. Pretorius, “Improvement of the Ulco network voltage regulation using a phase shifting transformer,” In AFRICON, 2011, IEEE pp. 1-6.
  • [15] M. Tümay T. Demirdelen S. Bal, B. Doğru, A. Cicibaş, A.K. Köseoğlu, ve M. Aksoy, “Faz Kaydırıcı Transformatörlerin Dünyadaki Durumu ve Uygulama Alanlarının Literatür İncelemesi,” Güç Sistemleri Konferansı, CIGRE Türkiye, Kasım2016. [16] C.W. Taylor, Power System Voltage Stability, Mc Graw-Hill, Inc., 1994.
  • [17] S. Johansson, “Long-term Voltage Stability in Power Systems-Alleviating the Impact of Generator Current Limiters,” Doctor of Philosophy, School of Electrical and Computer Engineering CHALMERS UNIVERSITY OF TECHNOLOGY Göteborg, Sweden, 1998
  • [18] M.K. Pal, “Voltage stability: analysis needs, modelling requirement, and modelling adequacy,” In IEE Proceedings C-Generation, Transmission and Distribution, vol. 140, no. 4, pp. 279-286, 1993.
  • [19] C.A. Canizares and F.L. Alvarado, “Point of collapse and continuation methods for large AC/DC systems,” IEEE transactions on Power Systems, vol. 8, no. 1, pp. 1-8, 1993
  • [20] F. Milano, Documentation for PSAT version 1.3. 4. Power System Analysis Toolbox, 2005.
  • [21] Anonim, (4 Ekim 2017). [Online]. Erişim: 10.04.2017, http://faraday1.ucd.ie/psat.html.

Title of the Paper Effects of Phase Shifting Transformers on Dynamic Voltage Stability

Yıl 2018, Cilt:6 Sayı:2 (2018) (Özel Sayı: IMCOFE 2017), 469 - 480, 06.04.2018

Öz

Today, there is
constant increase in demand for electricity and structural changes in the power
system with developing technology. There are constant changes in power systems.
These changes are in the form of additional systems as well as additional
devices. In this case, the stability values can change as the structure of the
system changes. However, it is desired that the power system be in a balanced
operating state and return to its original state after a disruptive effect. As
a result, the stability of voltage and the phenomenon of voltage collapse have
led to the steady and reliable operation of power systems. These analyzes are
important for determining the stability limits of the power system. 
In this study, the
Phase Shifting Transformer (PST) was analyzed by adding to IEEE 6-bus power
system. Firstly, the effects of PST were investigated by performing a load flow
in the system. The stability limits of the system were determined by continuous
load flow. Finally, unwanted short circuits are created in the power systems
and the effects of various phases of the PST are investigated. Analizler, Güç
Sistemleri Analizi Programı (PSAT) ile gerçekleştirilmiştir. It has been
observed on this system that the value and direction of the flowing power can
be controlled by changing the phase value of the PST as a result of the load
flow. It has also been shown that PST is also effective on losses. It has been
observed that the maximum power that can be withdrawn from the load bus from
the system as a result of continuous load flow and the critical voltage values
of the buses change in a similar way. Finally, a fault was created in the bus
that the PST was connected to and this device was cleaned after a certain time.
After the fault, the bus voltages have returned to their respective values, but
fluctuations in all bus voltages have been observed.

Kaynakça

  • [1] G. Verbič, M. Pantoš, and F. Gubina, “On voltage collapse and apparent-power losses,” Electric power systems research, vol. 76, no. 9, pp. 760-767, 2006.
  • [2] J. Verboomen, D. Van Hertem, P.H. Schavemaker, W.L. Kling and R. Belmans, “Phase shifting transformers: principles and applications,” In Future Power Systems, 2005 International Conference on IEEE, pp. 6.
  • [3] IEEE Power Engineering Society, “IEEE Guide for the Application, Specification, and Testing of Phase-Shifting Transformers,” C57.135, 2002.
  • [4] R. Tirupathi, et al., "Application of Phase Shifting Transformer in Indian Power System," International Journal of Computer and Electrical Engineering, vol. 4, no. 2, pp. 242, 2012.
  • [5] R.M. Castro, F.M. Batista and J.M. Pinto, “Application of FACTS in the Portuguese transmission system: investigation on the use of phase-shift transformers,” In Power Tech Proceedings, 2001 IEEE Porto, vol. 4, pp. 4, IEEE.
  • [6] J.K. Bladow and A.H.Montoya, “Experiences with parallel EHV phase shifting transformers,” IEEE Transactions on Power Delivery, vol. 6, no.3, pp. 1096-1100, 1991.
  • [7] P. Moore and P. Ashmole, “Flexible AC transmission systems. Part 4: Advanced FACTS controllers,” Power Engineering Journal, vol. 12, no. 2, pp. 95-100, 1998.
  • [8] H. Saadat, Power System Analysis. McGraw-Hill, Singapore, 2004.
  • [9] A. El Hraiech, K. Ben-Kilani, and M. Elleuch, “Control of parallel EHV interconnection lines using Phase Shifting Transformers,” In Systems, Signals and Devices (SSD), 2014 11th International Multi-Conference on IEEE, pp. 1-7.
  • [10] L. Flavio GM, et al. "Phase shifter placement in large-scale systems via mixed integer linear programming," IEEE Transactions on Power Systems, vol. 18, no. 3, pp. 1029-1034, 2003.
  • [11] J.A. Momoh, J.Z. Zhu, G.D. Boswell and S. Hoffman, “Power system security enhancement by OPF with phase shifter,” IEEE transactions on power systems, vol. 16, no. 2, pp. 287-293, 2001.
  • [12] D. Van Hertem, J. Rimez and R. Belmans, “Power flow controlling devices as a smart and independent grid investment for flexible grid operations: Belgian case study,” IEEE Transactions on Smart Grid, vol. 4, no.3, pp. 1656-1664, 2013.
  • [13] L. Contreras-Aguilar, N. García, M.A. Islas-Martínez and R. Adame-Ortiz, “Implementation of a VFT model in PSS/E suitable for power flow and transient stability simulations,” In Power and Energy Society General Meeting, 2012 IEEE, pp. 1-8.
  • [14] S. Sithole, N. Mbuli and J.H.C. Pretorius, “Improvement of the Ulco network voltage regulation using a phase shifting transformer,” In AFRICON, 2011, IEEE pp. 1-6.
  • [15] M. Tümay T. Demirdelen S. Bal, B. Doğru, A. Cicibaş, A.K. Köseoğlu, ve M. Aksoy, “Faz Kaydırıcı Transformatörlerin Dünyadaki Durumu ve Uygulama Alanlarının Literatür İncelemesi,” Güç Sistemleri Konferansı, CIGRE Türkiye, Kasım2016. [16] C.W. Taylor, Power System Voltage Stability, Mc Graw-Hill, Inc., 1994.
  • [17] S. Johansson, “Long-term Voltage Stability in Power Systems-Alleviating the Impact of Generator Current Limiters,” Doctor of Philosophy, School of Electrical and Computer Engineering CHALMERS UNIVERSITY OF TECHNOLOGY Göteborg, Sweden, 1998
  • [18] M.K. Pal, “Voltage stability: analysis needs, modelling requirement, and modelling adequacy,” In IEE Proceedings C-Generation, Transmission and Distribution, vol. 140, no. 4, pp. 279-286, 1993.
  • [19] C.A. Canizares and F.L. Alvarado, “Point of collapse and continuation methods for large AC/DC systems,” IEEE transactions on Power Systems, vol. 8, no. 1, pp. 1-8, 1993
  • [20] F. Milano, Documentation for PSAT version 1.3. 4. Power System Analysis Toolbox, 2005.
  • [21] Anonim, (4 Ekim 2017). [Online]. Erişim: 10.04.2017, http://faraday1.ucd.ie/psat.html.
Toplam 20 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Salih Tosun

Ali Öztürk

Yayımlanma Tarihi 6 Nisan 2018
Yayımlandığı Sayı Yıl 2018 Cilt:6 Sayı:2 (2018) (Özel Sayı: IMCOFE 2017)

Kaynak Göster

APA Tosun, S., & Öztürk, A. (2018). Faz Kaydırıcı Transformatörlerin Dinamik Gerilim Kararlılığına Etkileri. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi, 6(2), 469-480.
AMA Tosun S, Öztürk A. Faz Kaydırıcı Transformatörlerin Dinamik Gerilim Kararlılığına Etkileri. DÜBİTED. Nisan 2018;6(2):469-480.
Chicago Tosun, Salih, ve Ali Öztürk. “Faz Kaydırıcı Transformatörlerin Dinamik Gerilim Kararlılığına Etkileri”. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi 6, sy. 2 (Nisan 2018): 469-80.
EndNote Tosun S, Öztürk A (01 Nisan 2018) Faz Kaydırıcı Transformatörlerin Dinamik Gerilim Kararlılığına Etkileri. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 6 2 469–480.
IEEE S. Tosun ve A. Öztürk, “Faz Kaydırıcı Transformatörlerin Dinamik Gerilim Kararlılığına Etkileri”, DÜBİTED, c. 6, sy. 2, ss. 469–480, 2018.
ISNAD Tosun, Salih - Öztürk, Ali. “Faz Kaydırıcı Transformatörlerin Dinamik Gerilim Kararlılığına Etkileri”. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 6/2 (Nisan 2018), 469-480.
JAMA Tosun S, Öztürk A. Faz Kaydırıcı Transformatörlerin Dinamik Gerilim Kararlılığına Etkileri. DÜBİTED. 2018;6:469–480.
MLA Tosun, Salih ve Ali Öztürk. “Faz Kaydırıcı Transformatörlerin Dinamik Gerilim Kararlılığına Etkileri”. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi, c. 6, sy. 2, 2018, ss. 469-80.
Vancouver Tosun S, Öztürk A. Faz Kaydırıcı Transformatörlerin Dinamik Gerilim Kararlılığına Etkileri. DÜBİTED. 2018;6(2):469-80.