Olgu Sunumu
BibTex RIS Kaynak Göster

Investigation of Polarization Dependent Interaction of Microwave and Plasma by Using Fluorescent Lamp Array

Yıl 2019, Cilt: 7 Sayı: 1, 215 - 222, 31.01.2019
https://doi.org/10.29130/dubited.433102

Öz

In this study, polarization-dependent microwave interaction with a fluorescent lamp array was investigated. This
interaction was examined with a receiver and transmitter at 10.5 GHz frequency. The fluorescent lamp array was
driven by 220V/50 Hz mains. Measured microwave signal change was around 77.5% in the energized state and
8.7% in the non-energized state of the lamp array due to polarization. It has been shown that if an array is used as
a polarizer in this way, a polarizer with an extinction ratio of 6.35 dB can be obtained.

Kaynakça

  • [1] B. Keržar and P. Weissglas, “Plasma microwave interaction”, Journal of Applied Physics, vol. 36, no. 8, pp. 2479-2484, 1965.
  • [2] H. K. Malik and A. K. Aria, “Microwave and plasma interaction in a rectangular waveguide: Effect of ponderomotive force”, Journal of Applied Physics, vol. 108, no. 1, 2010.
  • [3] G. J. M. Hagelaar, K. Hassouni and A. Gicquel, “Interaction between the electromagnetic fields and the plasma in a microwave plasma reactor”, Journal of Applied Physics, vol. 96, no. 4, pp. 1819-1828, 2004.
  • [4] O. Sakai, T. Sakaguchi, Y. Ito and K. Tachibana, “Interaction and control of millimeter-waves with microplasma arrays”, Plasma Phys. Controlled Fusion, vol. 47, pp. 617–627, 2005.
  • [5] O. Sakai, T. Sakaguchi and K. Tachibana, “Photonic bands in two dimensional microplasma arrays I. Theoretical derivation of band structures of electromagnetic waves”, Journal of Applied Physics, vol. 101, 2007.
  • [6] Q. Li-Mei, Y. Zi-Qiang, L. Feng, G. Xi and L. Da-Zhi, “Dispersion characteristics of two-dimensional unmagnetized dielectric plasma photonic crystal”, Chin. Phys. B, vol. 19, no. 3, 2010.
  • [7] B. Wang, and M. A. Cappelli, “A tunable microwave plasma photonic crystal filter”, Applied Physics Letters, vol. 107, no. 17, 2015.
  • [8] Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang and K. P. Loh, “Broadband graphene polarizer”, Nature photonics, vol. 5, no. 7, pp. 411-415, 2011.
  • [9] J. S. Cetnar, S. Vangala, W. Zhang, C. Pfeiffer, E. R. Brown and J. Guo, “High extinction ratio terahertz wire-grid polarizers with connecting bridges on quartz substrates”, Optics Letters, vol. 42, no. 5, pp. 955-958, 2017.
  • [10] M. Grande, G.V. Bianco, M.A. Vincenti, D. de Ceglia, P. Capezzuto, M. Scalora, A. D’Orazio and G. Bruno, “Optically transparent microwave polarizer based on quasi-metallic graphene”, Scientific Reports, vol. 5, 2015.
  • [11] S. J. Boehm, L. Kang, D. H. Werner and C. D. Keating, “Field‐switchable broadband polarizer based on reconfigurable nanowire assemblies”, Advanced Functional Materials, vol. 27, no. 5, 2017.
  • [12] W. McColl, C. Brooks and M. Brake, “Electron density and collision frequency of microwave-resonant-cavity-produced discharges”, Journal of Applied Physics, vol. 74, no. 6, pp. 3724–3735, 1993.
  • [13] C. Motta, A. Fonseca, G. Gomes and H. Maciel, “Electron number density and collision frequency measurements in a microwave surface wave discharge”, IEEE Conf. Pulsed Power Plasma Sci. Conf. (PPPS), 2001, pp. 1304–1307, Las Vegas NV-USA, doi: 10.1109/PPPS.2001.1001789, 2001.
  • [14] M. K. Howlader, Y. Yang and J. R. Roth, “Time-resolved measurements of electron number density and collision frequency for a fluorescent lamp plasma using microwave diagnostics”, IEEE Transactions on Plasma Science, vol. 33, no. 3, pp. 1093-1099, 2005.
  • [15] B. Wang, and M. A. Cappelli, “A plasma photonic crystal bandgap device”, Applied Physics Letters, vol. 108, no. 16, 2016.
  • [16] Pasco Scientific, (May 19, 2017) Experiment Guide for the PASCO Model WA-931: Microwave Modulation Kit, [Online] Available: https://www.pasco.com/file_downloads/Downloads_Manuals/Microwave-Optics-Experiment Guide-WA-9314C.pdf.

Kutuplanmaya Bağlı Mikrodalga Plazma Etkileşiminin Floresan Lamba Dizisi ile İncelenmesi

Yıl 2019, Cilt: 7 Sayı: 1, 215 - 222, 31.01.2019
https://doi.org/10.29130/dubited.433102

Öz

Yapılan bu çalışmada, floresan lamba dizisi ile kutuplanmaya bağlı mikrodalga etkileşimi incelenmiştir. Bu
etkileşim, 10,5 GHz frekansında alıcı ve verici kullanılarak araştırılmıştır. Floresan lamba dizisi 220V/50 Hz şehir
şebekesi kullanılarak sürülmüştür. Alıcıya ulaşan mikrodalga sinyalinde, lamba dizisinin enerjili durumda %77,5
ve enerjisiz durumunda ise %8,7 kutuplanmaya bağlı değişim gözlenmiştir. Tasarlanan floresan dizisinin
kutuplayıcı olarak kullanılması durumunda yok etme oranı 6,35 dB olan bir kutuplayıcı elde edilebileceği
gösterilmiştir.

Kaynakça

  • [1] B. Keržar and P. Weissglas, “Plasma microwave interaction”, Journal of Applied Physics, vol. 36, no. 8, pp. 2479-2484, 1965.
  • [2] H. K. Malik and A. K. Aria, “Microwave and plasma interaction in a rectangular waveguide: Effect of ponderomotive force”, Journal of Applied Physics, vol. 108, no. 1, 2010.
  • [3] G. J. M. Hagelaar, K. Hassouni and A. Gicquel, “Interaction between the electromagnetic fields and the plasma in a microwave plasma reactor”, Journal of Applied Physics, vol. 96, no. 4, pp. 1819-1828, 2004.
  • [4] O. Sakai, T. Sakaguchi, Y. Ito and K. Tachibana, “Interaction and control of millimeter-waves with microplasma arrays”, Plasma Phys. Controlled Fusion, vol. 47, pp. 617–627, 2005.
  • [5] O. Sakai, T. Sakaguchi and K. Tachibana, “Photonic bands in two dimensional microplasma arrays I. Theoretical derivation of band structures of electromagnetic waves”, Journal of Applied Physics, vol. 101, 2007.
  • [6] Q. Li-Mei, Y. Zi-Qiang, L. Feng, G. Xi and L. Da-Zhi, “Dispersion characteristics of two-dimensional unmagnetized dielectric plasma photonic crystal”, Chin. Phys. B, vol. 19, no. 3, 2010.
  • [7] B. Wang, and M. A. Cappelli, “A tunable microwave plasma photonic crystal filter”, Applied Physics Letters, vol. 107, no. 17, 2015.
  • [8] Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang and K. P. Loh, “Broadband graphene polarizer”, Nature photonics, vol. 5, no. 7, pp. 411-415, 2011.
  • [9] J. S. Cetnar, S. Vangala, W. Zhang, C. Pfeiffer, E. R. Brown and J. Guo, “High extinction ratio terahertz wire-grid polarizers with connecting bridges on quartz substrates”, Optics Letters, vol. 42, no. 5, pp. 955-958, 2017.
  • [10] M. Grande, G.V. Bianco, M.A. Vincenti, D. de Ceglia, P. Capezzuto, M. Scalora, A. D’Orazio and G. Bruno, “Optically transparent microwave polarizer based on quasi-metallic graphene”, Scientific Reports, vol. 5, 2015.
  • [11] S. J. Boehm, L. Kang, D. H. Werner and C. D. Keating, “Field‐switchable broadband polarizer based on reconfigurable nanowire assemblies”, Advanced Functional Materials, vol. 27, no. 5, 2017.
  • [12] W. McColl, C. Brooks and M. Brake, “Electron density and collision frequency of microwave-resonant-cavity-produced discharges”, Journal of Applied Physics, vol. 74, no. 6, pp. 3724–3735, 1993.
  • [13] C. Motta, A. Fonseca, G. Gomes and H. Maciel, “Electron number density and collision frequency measurements in a microwave surface wave discharge”, IEEE Conf. Pulsed Power Plasma Sci. Conf. (PPPS), 2001, pp. 1304–1307, Las Vegas NV-USA, doi: 10.1109/PPPS.2001.1001789, 2001.
  • [14] M. K. Howlader, Y. Yang and J. R. Roth, “Time-resolved measurements of electron number density and collision frequency for a fluorescent lamp plasma using microwave diagnostics”, IEEE Transactions on Plasma Science, vol. 33, no. 3, pp. 1093-1099, 2005.
  • [15] B. Wang, and M. A. Cappelli, “A plasma photonic crystal bandgap device”, Applied Physics Letters, vol. 108, no. 16, 2016.
  • [16] Pasco Scientific, (May 19, 2017) Experiment Guide for the PASCO Model WA-931: Microwave Modulation Kit, [Online] Available: https://www.pasco.com/file_downloads/Downloads_Manuals/Microwave-Optics-Experiment Guide-WA-9314C.pdf.
Toplam 16 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

İbrahim Akkaya

Yavuz Öztürk

Yayımlanma Tarihi 31 Ocak 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 7 Sayı: 1

Kaynak Göster

APA Akkaya, İ., & Öztürk, Y. (2019). Kutuplanmaya Bağlı Mikrodalga Plazma Etkileşiminin Floresan Lamba Dizisi ile İncelenmesi. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi, 7(1), 215-222. https://doi.org/10.29130/dubited.433102
AMA Akkaya İ, Öztürk Y. Kutuplanmaya Bağlı Mikrodalga Plazma Etkileşiminin Floresan Lamba Dizisi ile İncelenmesi. DÜBİTED. Ocak 2019;7(1):215-222. doi:10.29130/dubited.433102
Chicago Akkaya, İbrahim, ve Yavuz Öztürk. “Kutuplanmaya Bağlı Mikrodalga Plazma Etkileşiminin Floresan Lamba Dizisi Ile İncelenmesi”. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi 7, sy. 1 (Ocak 2019): 215-22. https://doi.org/10.29130/dubited.433102.
EndNote Akkaya İ, Öztürk Y (01 Ocak 2019) Kutuplanmaya Bağlı Mikrodalga Plazma Etkileşiminin Floresan Lamba Dizisi ile İncelenmesi. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 7 1 215–222.
IEEE İ. Akkaya ve Y. Öztürk, “Kutuplanmaya Bağlı Mikrodalga Plazma Etkileşiminin Floresan Lamba Dizisi ile İncelenmesi”, DÜBİTED, c. 7, sy. 1, ss. 215–222, 2019, doi: 10.29130/dubited.433102.
ISNAD Akkaya, İbrahim - Öztürk, Yavuz. “Kutuplanmaya Bağlı Mikrodalga Plazma Etkileşiminin Floresan Lamba Dizisi Ile İncelenmesi”. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 7/1 (Ocak 2019), 215-222. https://doi.org/10.29130/dubited.433102.
JAMA Akkaya İ, Öztürk Y. Kutuplanmaya Bağlı Mikrodalga Plazma Etkileşiminin Floresan Lamba Dizisi ile İncelenmesi. DÜBİTED. 2019;7:215–222.
MLA Akkaya, İbrahim ve Yavuz Öztürk. “Kutuplanmaya Bağlı Mikrodalga Plazma Etkileşiminin Floresan Lamba Dizisi Ile İncelenmesi”. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi, c. 7, sy. 1, 2019, ss. 215-22, doi:10.29130/dubited.433102.
Vancouver Akkaya İ, Öztürk Y. Kutuplanmaya Bağlı Mikrodalga Plazma Etkileşiminin Floresan Lamba Dizisi ile İncelenmesi. DÜBİTED. 2019;7(1):215-22.