Araştırma Makalesi
BibTex RIS Kaynak Göster

Internet of Things Based Meteorological Data Tracking System

Yıl 2019, Cilt: 7 Sayı: 1, 650 - 663, 31.01.2019
https://doi.org/10.29130/dubited.482651

Öz

In this study, the weather station constructed on roof of Kocaeli University Uzunciftlik Nuh Cimento Vocational
High School for tracking meteorological data, determining solar and wind energy potential of the region with
actual data, collecting meteorological data in order to use in estimation algorithms of air or alternative energy was
discussed. With the established weather station, global radiation, wind speed, wind direction, temperature and
humidity data of the region were collected with 32 bit Arduino Due microcontroller and recorded to SD memory
module. In addition, the system has been converted to a application of Internet of Things (IoT) by taking the data
to ThingSpeak cloud environment via the ESP8266 WiFi module. Furthermore, daily radiation per square meter,
daily average, maximum, minimum temperature and humidity, daily average and maximum wind speed belonging
to the term from August 2018 to December 2018 were presented with the help of graphs.

Kaynakça

  • [1] D. Cesarini, L. Cassano, M. Kuri, V. Bilas, and M. Avvenuti, “AENEAS: An energy-aware simulator of automatic weather stations,” IEEE Sens. J., vol. 14, no. 11, pp. 3932–3943, 2014.
  • [2] G. Says, “Gartner Says 6.4 Billion Connected ‘Things’ Will Be in Use in 2016, Up 30 Percent From 2015,” Gartner, Inc., 2015. [Online]. Available: https://www.gartner.com/newsroom/id/3165317.
  • [3] D. Evans, “IoT by Cisco 2011,” Cisco Internet Bus. Solut. Gr., April, 2011. [Online]. https://www.cisco.com/c/dam/en_us/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf
  • [4] A. Martín-Garín, J. A. Millán-García, A. Baïri, J. Millán-Medel, and J. M. Sala-Lizarraga, “Environmental monitoring system based on an Open Source Platform and the Internet of Things for a building energy retrofit,” Autom. Constr., vol. 87, pp. 201–214, 2018.
  • [5] H. Li, M. K. Ochani, H. Zhang, and L. Zhang, “Design of micro-automatic weather station for modern power grid based on STM32,” J. Eng., c. 2017, no. 13, pp. 1629–1634, 2017.
  • [6] M. Benghanem, “Measurement of meteorological data based on wireless data acquisition system monitoring,” Appl. Energy, vol. 86, no. 12, pp. 2651–2660, 2009.
  • [7] H. Kiliç, B. Gümüş, and M. Yilmaz, “Diyarbakır İli İçin Güneş Enerjisi Verilerinin Meteorolojik Standartlarda Ölçülmesi ve Analizi,” EMO Bilimsel Dergi, , vol. 5, no. 1, pp. 47–52, 2016.
  • [8] S. Abbate, M. Avvenuti, L. Carturan, and D. Cesarini, “Deploying a Communicating Automatic Weather Station on an Alpine Glacier,” Procedia Comput. Sci., vol. 19, pp. 1190–1195, 2013.
  • [9] T. P. Fowdur, Y. Beeharry, V. Hurbungs, V. Bassoo, V. Ramnarain-Seetohul, and E. C. M. Lun, “Performance analysis and implementation of an adaptive real-time weather forecasting system,” Internet of Things, no. 3–4, pp. 12–33, 2018.
  • [10] M. El Moulat, O. Debauche, S. Mahmoudi, L. A. Brahim, P. Manneback, and F. Lebeau, “Monitoring System Using Internet of Things for Potential Landslides,” Procedia Comput. Sci., vol. 134, pp. 26–34, 2018.
  • [11] M. Yamanouchi, H. Ochiai, Y. K. Reddy, H. Esaki, and H. Sunahara, “Case Study of Constructing Weather Monitoring System in Difficult Environment,” in Proceedings - 2014 IEEE International Conference on Ubiquitous Intelligence and Computing, 2014, ss. 692–696.
  • [12] B. S. Rao, K. S. Rao, and N. Ome, “Internet of Things (IOT) Based Weather Monitoring system,” Int. J. Adv. Res. Comput. Commun. Eng., vol. 5, no. 9, pp. 312–319, 2016.
  • [13] K. N. V Satyanarayana, S. R. N. Reddy, P. V. Y. N. S. Teja, and B. Habibuddin, “IOT Based Smart Weather Station Using Raspberry-PI3,” no. 10, pp. 1–6, 2016.
  • [14] A. H. Malik and B. A. Parray, “Smart City IoT Based Weather Monitoring System,” c. 7, s. 5, ss. 3–8, 2017.
  • [15] P. Susmitha and G. Sowmyabala, “Design and Implementation of Weather Monitoring and Controlling System,” Int. J. Comput. Appl., vol. 97, no. 3, pp. 975–8887, 2014.
  • [16] M. R. Laskar, R. Bhattacharjee, M. S. Giri, and P. Bhattacharya, “Weather Forecasting Using Arduino Based Cube-Sat,” Procedia Comput. Sci., no. 89, no. 320–323, 2016.
  • [17] E. G. Dada, S. B. Joseph, D. Mustapha, and B. I. Hena, “Microcontroller Based Remote Weather Monitoring System,” vol. 5, no. 4, pp. 276–287, 2018.
  • [18] D. Gaurav, D. Mittal, B. Vaidya, and J. Mathew, “A GSM based low cost weather monitoring system for solar and wind energy generation,” 5th Int. Conf. Appl. Digit. Inf. Web Technol. ICADIWT 2014, 2014, pp. 1–7,.
  • [19] R. H. Ma, Y. H. Wang, and C. Y. Lee, “Wireless remote weather monitoring system based on MEMS technologies,” Sensors, vol. 11, no. 3, pp. 2715–2727, 2011.

Nesnelerin İnterneti Tabanlı Meteorolojik Veri Takip Sistemi

Yıl 2019, Cilt: 7 Sayı: 1, 650 - 663, 31.01.2019
https://doi.org/10.29130/dubited.482651

Öz

Bu çalışmada, meteorolojik verilerin takibi, güneş ve rüzgar enerjisi açısından bölge potansiyelinin gerçek veriler
ile saptanması, hava veya alternatif enerji sistemleri tahmin algoritmalarında kullanılmak üzere meteorolojik
verilerin toplanması amaçlarıyla Kocaeli Üniversitesi Uzunçiftlik Nuh Çimento Meslek Yüksekokulu çatısına
kurulan hava istasyonu ele alınmıştır. Kurulan hava istasyonu ile bölgenin global ışıma, rüzgar hızı, rüzgar yönü,
sıcaklık ve nem verileri 32 bit Arduino Due mikrodenetleyici ile toplanarak SD hafıza modülüne kayıt edilmiştir.
Ayrıca veriler ESP8266 WiFi modülü aracılığıyla ThingSpeak bulut ortamına alınarak sistem bir nesnelerin
interneti uygulamasına dönüştürülmüştür. Çalışma içerisinde ek olarak Ağustos 2018-Aralık 2018 döneminde
sistemden elde edilen veriler kullanılarak günlük metrekare başına toplam ışıma, günlük ortalama, maksimum,
minimum sıcaklık ve nem, günlük ortalama ve maksimum rüzgar hızı verileri grafikler yardımıyla sunulmuştur.

Kaynakça

  • [1] D. Cesarini, L. Cassano, M. Kuri, V. Bilas, and M. Avvenuti, “AENEAS: An energy-aware simulator of automatic weather stations,” IEEE Sens. J., vol. 14, no. 11, pp. 3932–3943, 2014.
  • [2] G. Says, “Gartner Says 6.4 Billion Connected ‘Things’ Will Be in Use in 2016, Up 30 Percent From 2015,” Gartner, Inc., 2015. [Online]. Available: https://www.gartner.com/newsroom/id/3165317.
  • [3] D. Evans, “IoT by Cisco 2011,” Cisco Internet Bus. Solut. Gr., April, 2011. [Online]. https://www.cisco.com/c/dam/en_us/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf
  • [4] A. Martín-Garín, J. A. Millán-García, A. Baïri, J. Millán-Medel, and J. M. Sala-Lizarraga, “Environmental monitoring system based on an Open Source Platform and the Internet of Things for a building energy retrofit,” Autom. Constr., vol. 87, pp. 201–214, 2018.
  • [5] H. Li, M. K. Ochani, H. Zhang, and L. Zhang, “Design of micro-automatic weather station for modern power grid based on STM32,” J. Eng., c. 2017, no. 13, pp. 1629–1634, 2017.
  • [6] M. Benghanem, “Measurement of meteorological data based on wireless data acquisition system monitoring,” Appl. Energy, vol. 86, no. 12, pp. 2651–2660, 2009.
  • [7] H. Kiliç, B. Gümüş, and M. Yilmaz, “Diyarbakır İli İçin Güneş Enerjisi Verilerinin Meteorolojik Standartlarda Ölçülmesi ve Analizi,” EMO Bilimsel Dergi, , vol. 5, no. 1, pp. 47–52, 2016.
  • [8] S. Abbate, M. Avvenuti, L. Carturan, and D. Cesarini, “Deploying a Communicating Automatic Weather Station on an Alpine Glacier,” Procedia Comput. Sci., vol. 19, pp. 1190–1195, 2013.
  • [9] T. P. Fowdur, Y. Beeharry, V. Hurbungs, V. Bassoo, V. Ramnarain-Seetohul, and E. C. M. Lun, “Performance analysis and implementation of an adaptive real-time weather forecasting system,” Internet of Things, no. 3–4, pp. 12–33, 2018.
  • [10] M. El Moulat, O. Debauche, S. Mahmoudi, L. A. Brahim, P. Manneback, and F. Lebeau, “Monitoring System Using Internet of Things for Potential Landslides,” Procedia Comput. Sci., vol. 134, pp. 26–34, 2018.
  • [11] M. Yamanouchi, H. Ochiai, Y. K. Reddy, H. Esaki, and H. Sunahara, “Case Study of Constructing Weather Monitoring System in Difficult Environment,” in Proceedings - 2014 IEEE International Conference on Ubiquitous Intelligence and Computing, 2014, ss. 692–696.
  • [12] B. S. Rao, K. S. Rao, and N. Ome, “Internet of Things (IOT) Based Weather Monitoring system,” Int. J. Adv. Res. Comput. Commun. Eng., vol. 5, no. 9, pp. 312–319, 2016.
  • [13] K. N. V Satyanarayana, S. R. N. Reddy, P. V. Y. N. S. Teja, and B. Habibuddin, “IOT Based Smart Weather Station Using Raspberry-PI3,” no. 10, pp. 1–6, 2016.
  • [14] A. H. Malik and B. A. Parray, “Smart City IoT Based Weather Monitoring System,” c. 7, s. 5, ss. 3–8, 2017.
  • [15] P. Susmitha and G. Sowmyabala, “Design and Implementation of Weather Monitoring and Controlling System,” Int. J. Comput. Appl., vol. 97, no. 3, pp. 975–8887, 2014.
  • [16] M. R. Laskar, R. Bhattacharjee, M. S. Giri, and P. Bhattacharya, “Weather Forecasting Using Arduino Based Cube-Sat,” Procedia Comput. Sci., no. 89, no. 320–323, 2016.
  • [17] E. G. Dada, S. B. Joseph, D. Mustapha, and B. I. Hena, “Microcontroller Based Remote Weather Monitoring System,” vol. 5, no. 4, pp. 276–287, 2018.
  • [18] D. Gaurav, D. Mittal, B. Vaidya, and J. Mathew, “A GSM based low cost weather monitoring system for solar and wind energy generation,” 5th Int. Conf. Appl. Digit. Inf. Web Technol. ICADIWT 2014, 2014, pp. 1–7,.
  • [19] R. H. Ma, Y. H. Wang, and C. Y. Lee, “Wireless remote weather monitoring system based on MEMS technologies,” Sensors, vol. 11, no. 3, pp. 2715–2727, 2011.
Toplam 19 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Ersoy Kelebekler 0000-0002-9407-3926

Yayımlanma Tarihi 31 Ocak 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 7 Sayı: 1

Kaynak Göster

APA Kelebekler, E. (2019). Nesnelerin İnterneti Tabanlı Meteorolojik Veri Takip Sistemi. Duzce University Journal of Science and Technology, 7(1), 650-663. https://doi.org/10.29130/dubited.482651
AMA Kelebekler E. Nesnelerin İnterneti Tabanlı Meteorolojik Veri Takip Sistemi. DÜBİTED. Ocak 2019;7(1):650-663. doi:10.29130/dubited.482651
Chicago Kelebekler, Ersoy. “Nesnelerin İnterneti Tabanlı Meteorolojik Veri Takip Sistemi”. Duzce University Journal of Science and Technology 7, sy. 1 (Ocak 2019): 650-63. https://doi.org/10.29130/dubited.482651.
EndNote Kelebekler E (01 Ocak 2019) Nesnelerin İnterneti Tabanlı Meteorolojik Veri Takip Sistemi. Duzce University Journal of Science and Technology 7 1 650–663.
IEEE E. Kelebekler, “Nesnelerin İnterneti Tabanlı Meteorolojik Veri Takip Sistemi”, DÜBİTED, c. 7, sy. 1, ss. 650–663, 2019, doi: 10.29130/dubited.482651.
ISNAD Kelebekler, Ersoy. “Nesnelerin İnterneti Tabanlı Meteorolojik Veri Takip Sistemi”. Duzce University Journal of Science and Technology 7/1 (Ocak 2019), 650-663. https://doi.org/10.29130/dubited.482651.
JAMA Kelebekler E. Nesnelerin İnterneti Tabanlı Meteorolojik Veri Takip Sistemi. DÜBİTED. 2019;7:650–663.
MLA Kelebekler, Ersoy. “Nesnelerin İnterneti Tabanlı Meteorolojik Veri Takip Sistemi”. Duzce University Journal of Science and Technology, c. 7, sy. 1, 2019, ss. 650-63, doi:10.29130/dubited.482651.
Vancouver Kelebekler E. Nesnelerin İnterneti Tabanlı Meteorolojik Veri Takip Sistemi. DÜBİTED. 2019;7(1):650-63.