Investigation of the effect of SA (Salicylic Acid) application on gene expression during leaf senescence in Arabidopsis thaliana
Yıl 2019,
Cilt: 7 Sayı: 1, 553 - 565, 31.01.2019
Nihal Gören Sağlam
,
Gül Öz
Öz
Leaf senescence is an important developmental process controlled by many internal and external factors. The
effects of internal factors, especially hormones on leaf senescence is very important. Salicylic Acid (SA) is an
important plant growth regulator known to promote senescence and it is involved in plant defense mechanism. In
this study, the effect of SA on leaf senescence was investigated in terms of gene expression. For this purpose,
salicylic acid was applied to the leaves of Arabidopsis thaliana on the 27th, 31st and 35th days and fluorescence
changes were determined daily. In order to determine gene expression, microarray analysis was performed in the
8th leaves harvested 4 hours after the applications. The data obtained reveal the changes of SA in gene
expression during senescence.
Kaynakça
- [1] M. Sharabi-Schwager, A. Samach, R. Porat, “Overexpression of the CBF2 transcriptional activator in Arabidopsis suppresses the responsiveness of leaf tissue to the stress hormone ethylene,” Plant Biology, vol. 12, no. 4, pp. 630-638, 2010.
- [2] Y. Yamada, S. Furusawa, S. Nagasaka, K. Shimomura, S. Yamaguchi, M. Umehara, “Strigolactone signaling regulates rice leaf senescence in response to a phosphate
deficiency,” Planta, vol. 240, no. 2, pp. 399-408, 2014.
- [3] P. O. Lim, H. J. Kim, H. Gil Nam, “Leaf senescence,” Annual Reviews of Plant Biology, vol. 58, pp. 115-136, 2007.
- [4] P. L. Gregersen, A. Culetic, L. Boschian, K. Krupinska, “Plant senescence and crop productivity,” Plant Molecular Biology, vol. 82, no.6, pp. 603-622, 2013.
- [5] H. Ueda, M. Kusaba, “Strigolactone regulates leaf senescence in concert with ethylene in Arabidopsis,” Plant Physiology, vol. 169, no.1, pp. 138-147, 2015.
- [6] S. Balazadeh, J. Schildhauer, W. L. Araújo, S. Munné-Bosch, A. R. Fernie, S. Proost, B. Mueller-Roeber, “Reversal of senescence by N resupply to N-starved Arabidopsis thaliana: transcriptomic and metabolomic consequences,” Journal of Experimental Botany, vol. 65, no.14, pp.
3975-3992, 2014.
- [7] K. Morris, S. A. H. Mackerness, T. Page, C. F. John, A. M. Murphy, J. P. Carr, V. BuchananWollaston, “Salicylic acid has a role in regulating gene expression during leaf senescence,” The Plant Journal, vol. 23, no. 5, pp. 677-685, 2000.
- [8] Y. He, H. Fukushige, D. F. Hildebrand, S. Gan, “Evidence supporting a role of jasmonic acid in Arabidopsis leaf senescence,” Plant Physiology, vol. 128, no. 3, pp. 876-884, 2002.
- [9] P. O. Lim, H. G. Nam, “Aging and senescence of the leaf organ,” Journal of Plant Biology, vol. 50, no.3, pp. 291-300, 2007.
- [10] R. Jibran, D. A. Hunter, P. P. Dijkwel, “Hormonal regulation of leaf senescence through integration of developmental and stress signals,” Plant Molecular Biology, vol. 82, no.6, pp. 547-561, 2013.
- [11] Y. Yamada, M. Umehara, “Possible roles of strigolactones during leaf senescence,” Plants, vol. 4, no.3, pp. 664-677, 2015.
- [12] S. Munné-Bosch, “Aging in perennials,” Critical Reviews in Plant Sciences, vol. 26 no.3, pp. 123-138, 2007.
- [13] G. H. Chen, L. T. Huang, M. N. Yap, R. H. Lee, Y. J. Huang, M. C. Cheng, S. C. G. Chen, “Molecular characterization of a senescence-associated gene encoding cysteine proteinase and its gene expression during leaf senescence in sweet potato,” Plant and Cell Physiology, vol. 43, no.9, pp. 984-991, 2002.
- [14] M. E.Ghanem, A. Albacete, C. Martínez-Andújar, M. Acosta, R. Romero-Aranda, I. C. Dodd, F. Pérez-Alfocea, “Hormonal changes during salinity-induced leaf senescence in tomato (Solanum lycopersicum L.),” Journal of Experimental Botany, vol. 59, no.11, pp. 3039-3050, 2008.
- [15] V. Buchanan-Wollaston, T. Page, E. Harrison, E. Breeze, P. O. Lim, H. G. Nam, C. J. Leaver, “Comparative transcriptome analysis reveals significant differences in gene expression and signalling pathways between developmental and dark/starvation-induced senescence in Arabidopsis,” The Plant Journal, vol. 42, no. 4, pp. 567-585, 2005.
- [16] E. van der Graaff, R. Schwacke, A. Schneider, M. Desimone, U. I. Flügge, R. Kunze, “Transcription analysis of Arabidopsis membrane transporters and hormone pathways during developmental and induced leaf senescence,” Plant Physiology, vol. 141, no.2, pp. 776-792, 2006.
- [17] E. Breeze, E. Harrison, T. Page, N. Warner, C. Shen, C. Zhang, V. Buchanan-Wollaston, “Transcriptional regulation of plant senescence: from functional genomics to systems biology,” Plant Biology, vol. 10, pp. 99-109, 2008.
- [18] E. Breeze, E. Harrison, S. McHattie, L. Hughes, R. Hickman, C. Hill, C. Zhang, “Highresolution temporal profiling of transcripts during Arabidopsis leaf senescence reveals a distinct chronology of processes and regulation,” The Plant Cell, vol. 23, no. 3, pp. 873-894, 2011.
- [19] R. Hickman, C. Hill, C. A. Penfold, E. Breeze, L. Bowden, J. D. Moore, A. Mead, “A local regulatory network around three NAC transcription factors in stress responses and senescence in A rabidopsis leaves,” The Plant Journal, vol. 75, no. 1, pp. 26-39. 2013.
- [20] R. De Michele, E. Vurro, C. Rigo, A. Costa, L. Elviri, M. Di Valentin, F. L. Schiavo, “Nitric oxide is involved in cadmium-induced programmed cell death in Arabidopsis suspension cultures,” Plant Physiology, vol. 150, no.1, pp. 217-228, 2009.
- [21] S. Farage-Barhom, S. Burd, L. Sonego, R. Perl-Treves, A. Lers, “Expression analysis of the BFN1 nuclease gene promoter during senescence, abscission, and programmed cell death-related processes,” Journal of Experimental Botany, vol. 59, no.12, pp. 3247-3258, 2008.
- [22] F A. M.ischer, S. Gan, “Nutrient remobilization during leaf senescence,” Annual Reviews of Senescence Processes in Plants, vol. 26, pp. 87-107, 2007.
- [23] R. P. Barbagallo, K. Oxborough, K. E. Pallett, N. R. Baker, “Rapid, noninvasive screening for perturbations of metabolism and plant growth using chlorophyll fluorescence imaging,” Plant Physiology, vol. 132, no. 2, pp. 485-493, 2003.
- [24] P. Haldimann, Y. Fracheboud, P. Stamp, “Photosynthetic performance and resistance to photoinhibition of Zea mays L. leaves grown at sub-optimal temperature.” Plant, Cell &Environment, vol. 19, no.1, pp. 85-92, 1996.
- [25] R. H. Li, P. G. Guo, B. Michael, G. Stefania, C. Salvatore, “Evaluation of chlorophyll content and fluorescence parameters as indicators of drought tolerance in barley,” Agricultural Sciences in China, vol. 5, no. 10, pp. 751-757, 2006.
- [26] E. Niewiadomska, L. Polzien, C. Desel, P. Rozpadek, Z. Miszalski, K. Krupinska, “Spatial patterns of senescence and development-dependent distribution of reactive oxygen species in tobacco (Nicotiana tabacum) leaves,” Journal of Plant Physiology, vol.166, no. 10, pp. 1057-1068, 2009.
- [27] N. R. Baker, E. Rosenqvist, “Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities,” Journal of Experimental Botany, vol. 55, no. 403, pp. 1607-1621, 2004.
- [28] E. Himelblau, R. M. Amasino, “Nutrients mobilized from leaves of Arabidopsis thaliana during leaf senescence,” Journal of Plant Physiology, vol. 158, no. 10, pp. 1317-1323, 2001.
- [29] N. R. Baker, “Chlorophyll fluorescence: a probe of photosynthesis in vivo,” Annual Reviews of Plant Biology, vol. 59, pp. 89-113, 2008.
- [30] Y. Guo, Z. Cai, S. Gan, “Transcriptome of Arabidopsis leaf senescence,” Plant, Cell & Environment, vol.27, no. 5, pp. 521-549, 2004.
- [31] J. E. Thompson, C. D. Froese, E. Madey, M. D. Smith, Y. Hong, “Lipid metabolism during plant senescence,” Progress in Lipid Research, vol. 37, no. 2, pp. 119-141, 1998.
- [32] M. T. Kaup, C. D. Froese, J. E. Thompson, “A role for diacylglycerol acyltransferase during leaf senescence,” Plant Physiology, vol. 129, no. 4, pp. 1616-1626, 2002.
- [33] L. Fan, S. Zheng, X. Wang, “Antisense suppression of phospholipase D alpha retards abscisic acid-and ethylene-promoted senescence of postharvest Arabidopsis leaves,” The Plant Cell, vol. 9, no. 12, 2183-2196, 1997.
- [34] L. D. Noodén, J. J. Guiamét, I. John, “Senescence mechanisms,” Physiologia Plantarum, vol. 101, no. 4, pp. 746-753, 1997.
- [35] W. R. Belknap, J. E. Garbarino, “The role of ubiquitin in plant senescence and stress responses,” Trends in Plant Science, vol. 1, no.10, pp. 331-335, 1996.
- [36] I. N. Roberts, C. Caputo, M. V. Criado, C. Funk, “Senescence-associated proteases in plants,” Physiologia Plantarum, vol. 145, no. 1, pp. 130-139, 2012.
- [37] J. F. Lin, S. H. Wu, “Molecular events in senescing Arabidopsis leaves,” The Plant Journal, vol. 39, no. 4, pp. 612-628, 2004.
- [38] A. N. Olsen, H. A. Ernst, L. L. Leggio, K. Skriver, “NAC transcription factors: structurally distinct, functionally diverse,” Trends in Plant Science, vol. 10, no. 2, pp. 79-87, 2005.
- [39] T. Eulgem, P. J. Rushton, S. Robatzek, I. E. Somssich, “The WRKY superfamily of plant transcription factors,” Trends in Plant Science, vol. 5, no. 5, pp. 199-206, 2000.
- [40] K. Hinderhofer, U. Zentgraf, “Identification of a transcription factor specifically expressed at the onset of leaf senescence,” Planta, vol. 213, no. 3, pp. 469-473, 2001.
- [41] Y. Miao, U. Zentgraf, “The antagonist function of Arabidopsis WRKY53 and ESR/ESP in leaf senescence is modulated by the jasmonic and salicylic acid equilibrium,” The Plant Cell, vol. 19, no. 3, pp. 819-830, 2007.
- [42] S. Robatzek, I. E. Somssich, “A new member of the Arabidopsis WRKY transcription factor family, AtWRKY6, is associated with both senescence-and defence-related processes,” The Plant Journal, vol. 28, no. 2, pp.123-133, 2001.
- [43] A. Krantev, R. Yordanova, T. Janda, G. Szalai, L. Popova, “Treatment with salicylic acid decreases the effect of cadmium on photosynthesis in maize plants,” Journal of Plant Physiology, vol. 165, no. 9, pp. 920-931, 2008.
Arabidopsis thaliana’da yaprak senesensi sırasında SA (Salisilik Asit) uygulamasının gen anlatımı üzerine etkisinin incelenmesi
Yıl 2019,
Cilt: 7 Sayı: 1, 553 - 565, 31.01.2019
Nihal Gören Sağlam
,
Gül Öz
Öz
Yaprak senesensi birçok iç ve dış faktör tarafından kontrol edilen önemli bir gelişimsel süreçtir. İç faktörlerden
özellikle hormonların yaprak senesensi üzerine etkisi çok önemlidir. Salisilik Asit (SA) senesensi teşvik ettiği
bilinen ve bitki savunma mekanizmasında görev alan önemli bir bitki büyüme düzenleyicisidir. Bu çalışmada,
SA’nın yaprak senesensi üzerindeki etkisi gen anlatımı açısından incelenmeye çalışılmıştır. Bu amaçla
Arabidopsis thaliana yapraklarına 27., 31. ve 35. günlerde SA uygulaması yapılmış ve günlük floresans
değişimleri takip edilmiştir. Gen anlatımını tespit edebilmek için uygulamalardan 4 saat sonra hasat edilen 8.
yapraklarda mikroarray analizi yapılmıştır. Elde edilen veriler SA’nın senesens sırasında gen anlatımında yaptığı
değişiklikleri ortaya koymaktadır.
Kaynakça
- [1] M. Sharabi-Schwager, A. Samach, R. Porat, “Overexpression of the CBF2 transcriptional activator in Arabidopsis suppresses the responsiveness of leaf tissue to the stress hormone ethylene,” Plant Biology, vol. 12, no. 4, pp. 630-638, 2010.
- [2] Y. Yamada, S. Furusawa, S. Nagasaka, K. Shimomura, S. Yamaguchi, M. Umehara, “Strigolactone signaling regulates rice leaf senescence in response to a phosphate
deficiency,” Planta, vol. 240, no. 2, pp. 399-408, 2014.
- [3] P. O. Lim, H. J. Kim, H. Gil Nam, “Leaf senescence,” Annual Reviews of Plant Biology, vol. 58, pp. 115-136, 2007.
- [4] P. L. Gregersen, A. Culetic, L. Boschian, K. Krupinska, “Plant senescence and crop productivity,” Plant Molecular Biology, vol. 82, no.6, pp. 603-622, 2013.
- [5] H. Ueda, M. Kusaba, “Strigolactone regulates leaf senescence in concert with ethylene in Arabidopsis,” Plant Physiology, vol. 169, no.1, pp. 138-147, 2015.
- [6] S. Balazadeh, J. Schildhauer, W. L. Araújo, S. Munné-Bosch, A. R. Fernie, S. Proost, B. Mueller-Roeber, “Reversal of senescence by N resupply to N-starved Arabidopsis thaliana: transcriptomic and metabolomic consequences,” Journal of Experimental Botany, vol. 65, no.14, pp.
3975-3992, 2014.
- [7] K. Morris, S. A. H. Mackerness, T. Page, C. F. John, A. M. Murphy, J. P. Carr, V. BuchananWollaston, “Salicylic acid has a role in regulating gene expression during leaf senescence,” The Plant Journal, vol. 23, no. 5, pp. 677-685, 2000.
- [8] Y. He, H. Fukushige, D. F. Hildebrand, S. Gan, “Evidence supporting a role of jasmonic acid in Arabidopsis leaf senescence,” Plant Physiology, vol. 128, no. 3, pp. 876-884, 2002.
- [9] P. O. Lim, H. G. Nam, “Aging and senescence of the leaf organ,” Journal of Plant Biology, vol. 50, no.3, pp. 291-300, 2007.
- [10] R. Jibran, D. A. Hunter, P. P. Dijkwel, “Hormonal regulation of leaf senescence through integration of developmental and stress signals,” Plant Molecular Biology, vol. 82, no.6, pp. 547-561, 2013.
- [11] Y. Yamada, M. Umehara, “Possible roles of strigolactones during leaf senescence,” Plants, vol. 4, no.3, pp. 664-677, 2015.
- [12] S. Munné-Bosch, “Aging in perennials,” Critical Reviews in Plant Sciences, vol. 26 no.3, pp. 123-138, 2007.
- [13] G. H. Chen, L. T. Huang, M. N. Yap, R. H. Lee, Y. J. Huang, M. C. Cheng, S. C. G. Chen, “Molecular characterization of a senescence-associated gene encoding cysteine proteinase and its gene expression during leaf senescence in sweet potato,” Plant and Cell Physiology, vol. 43, no.9, pp. 984-991, 2002.
- [14] M. E.Ghanem, A. Albacete, C. Martínez-Andújar, M. Acosta, R. Romero-Aranda, I. C. Dodd, F. Pérez-Alfocea, “Hormonal changes during salinity-induced leaf senescence in tomato (Solanum lycopersicum L.),” Journal of Experimental Botany, vol. 59, no.11, pp. 3039-3050, 2008.
- [15] V. Buchanan-Wollaston, T. Page, E. Harrison, E. Breeze, P. O. Lim, H. G. Nam, C. J. Leaver, “Comparative transcriptome analysis reveals significant differences in gene expression and signalling pathways between developmental and dark/starvation-induced senescence in Arabidopsis,” The Plant Journal, vol. 42, no. 4, pp. 567-585, 2005.
- [16] E. van der Graaff, R. Schwacke, A. Schneider, M. Desimone, U. I. Flügge, R. Kunze, “Transcription analysis of Arabidopsis membrane transporters and hormone pathways during developmental and induced leaf senescence,” Plant Physiology, vol. 141, no.2, pp. 776-792, 2006.
- [17] E. Breeze, E. Harrison, T. Page, N. Warner, C. Shen, C. Zhang, V. Buchanan-Wollaston, “Transcriptional regulation of plant senescence: from functional genomics to systems biology,” Plant Biology, vol. 10, pp. 99-109, 2008.
- [18] E. Breeze, E. Harrison, S. McHattie, L. Hughes, R. Hickman, C. Hill, C. Zhang, “Highresolution temporal profiling of transcripts during Arabidopsis leaf senescence reveals a distinct chronology of processes and regulation,” The Plant Cell, vol. 23, no. 3, pp. 873-894, 2011.
- [19] R. Hickman, C. Hill, C. A. Penfold, E. Breeze, L. Bowden, J. D. Moore, A. Mead, “A local regulatory network around three NAC transcription factors in stress responses and senescence in A rabidopsis leaves,” The Plant Journal, vol. 75, no. 1, pp. 26-39. 2013.
- [20] R. De Michele, E. Vurro, C. Rigo, A. Costa, L. Elviri, M. Di Valentin, F. L. Schiavo, “Nitric oxide is involved in cadmium-induced programmed cell death in Arabidopsis suspension cultures,” Plant Physiology, vol. 150, no.1, pp. 217-228, 2009.
- [21] S. Farage-Barhom, S. Burd, L. Sonego, R. Perl-Treves, A. Lers, “Expression analysis of the BFN1 nuclease gene promoter during senescence, abscission, and programmed cell death-related processes,” Journal of Experimental Botany, vol. 59, no.12, pp. 3247-3258, 2008.
- [22] F A. M.ischer, S. Gan, “Nutrient remobilization during leaf senescence,” Annual Reviews of Senescence Processes in Plants, vol. 26, pp. 87-107, 2007.
- [23] R. P. Barbagallo, K. Oxborough, K. E. Pallett, N. R. Baker, “Rapid, noninvasive screening for perturbations of metabolism and plant growth using chlorophyll fluorescence imaging,” Plant Physiology, vol. 132, no. 2, pp. 485-493, 2003.
- [24] P. Haldimann, Y. Fracheboud, P. Stamp, “Photosynthetic performance and resistance to photoinhibition of Zea mays L. leaves grown at sub-optimal temperature.” Plant, Cell &Environment, vol. 19, no.1, pp. 85-92, 1996.
- [25] R. H. Li, P. G. Guo, B. Michael, G. Stefania, C. Salvatore, “Evaluation of chlorophyll content and fluorescence parameters as indicators of drought tolerance in barley,” Agricultural Sciences in China, vol. 5, no. 10, pp. 751-757, 2006.
- [26] E. Niewiadomska, L. Polzien, C. Desel, P. Rozpadek, Z. Miszalski, K. Krupinska, “Spatial patterns of senescence and development-dependent distribution of reactive oxygen species in tobacco (Nicotiana tabacum) leaves,” Journal of Plant Physiology, vol.166, no. 10, pp. 1057-1068, 2009.
- [27] N. R. Baker, E. Rosenqvist, “Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities,” Journal of Experimental Botany, vol. 55, no. 403, pp. 1607-1621, 2004.
- [28] E. Himelblau, R. M. Amasino, “Nutrients mobilized from leaves of Arabidopsis thaliana during leaf senescence,” Journal of Plant Physiology, vol. 158, no. 10, pp. 1317-1323, 2001.
- [29] N. R. Baker, “Chlorophyll fluorescence: a probe of photosynthesis in vivo,” Annual Reviews of Plant Biology, vol. 59, pp. 89-113, 2008.
- [30] Y. Guo, Z. Cai, S. Gan, “Transcriptome of Arabidopsis leaf senescence,” Plant, Cell & Environment, vol.27, no. 5, pp. 521-549, 2004.
- [31] J. E. Thompson, C. D. Froese, E. Madey, M. D. Smith, Y. Hong, “Lipid metabolism during plant senescence,” Progress in Lipid Research, vol. 37, no. 2, pp. 119-141, 1998.
- [32] M. T. Kaup, C. D. Froese, J. E. Thompson, “A role for diacylglycerol acyltransferase during leaf senescence,” Plant Physiology, vol. 129, no. 4, pp. 1616-1626, 2002.
- [33] L. Fan, S. Zheng, X. Wang, “Antisense suppression of phospholipase D alpha retards abscisic acid-and ethylene-promoted senescence of postharvest Arabidopsis leaves,” The Plant Cell, vol. 9, no. 12, 2183-2196, 1997.
- [34] L. D. Noodén, J. J. Guiamét, I. John, “Senescence mechanisms,” Physiologia Plantarum, vol. 101, no. 4, pp. 746-753, 1997.
- [35] W. R. Belknap, J. E. Garbarino, “The role of ubiquitin in plant senescence and stress responses,” Trends in Plant Science, vol. 1, no.10, pp. 331-335, 1996.
- [36] I. N. Roberts, C. Caputo, M. V. Criado, C. Funk, “Senescence-associated proteases in plants,” Physiologia Plantarum, vol. 145, no. 1, pp. 130-139, 2012.
- [37] J. F. Lin, S. H. Wu, “Molecular events in senescing Arabidopsis leaves,” The Plant Journal, vol. 39, no. 4, pp. 612-628, 2004.
- [38] A. N. Olsen, H. A. Ernst, L. L. Leggio, K. Skriver, “NAC transcription factors: structurally distinct, functionally diverse,” Trends in Plant Science, vol. 10, no. 2, pp. 79-87, 2005.
- [39] T. Eulgem, P. J. Rushton, S. Robatzek, I. E. Somssich, “The WRKY superfamily of plant transcription factors,” Trends in Plant Science, vol. 5, no. 5, pp. 199-206, 2000.
- [40] K. Hinderhofer, U. Zentgraf, “Identification of a transcription factor specifically expressed at the onset of leaf senescence,” Planta, vol. 213, no. 3, pp. 469-473, 2001.
- [41] Y. Miao, U. Zentgraf, “The antagonist function of Arabidopsis WRKY53 and ESR/ESP in leaf senescence is modulated by the jasmonic and salicylic acid equilibrium,” The Plant Cell, vol. 19, no. 3, pp. 819-830, 2007.
- [42] S. Robatzek, I. E. Somssich, “A new member of the Arabidopsis WRKY transcription factor family, AtWRKY6, is associated with both senescence-and defence-related processes,” The Plant Journal, vol. 28, no. 2, pp.123-133, 2001.
- [43] A. Krantev, R. Yordanova, T. Janda, G. Szalai, L. Popova, “Treatment with salicylic acid decreases the effect of cadmium on photosynthesis in maize plants,” Journal of Plant Physiology, vol. 165, no. 9, pp. 920-931, 2008.