Araştırma Makalesi
BibTex RIS Kaynak Göster

Türk Perakende Şirketindeki Çevirimiçi Alış Verişler için İlişkililik Kurallarını Çıkarılması: Durum Çalışması

Yıl 2019, Cilt: 7 Sayı: 3, 1176 - 1186, 31.07.2019
https://doi.org/10.29130/dubited.510529

Öz

Kaynakça

  • [1] G. Gürgen, “Birliktelik Kuralları ile Sepet Analizi ve Uygulaması” M.Sc. Thesis Marmara University, İstanbul-Turkey, 2008
  • [2] M. E. Aras, “Birliktelik Kuralları ile web siteleri için tavsiye moturu uygulaması”, M.Sc. Thesis Marmara University, İstanbul- Turkey, 2010
  • [3] A. Kalkov, “Veri Madenciliği ile bir e-ticaret uygulaması” M.Sc. Thesis Gazi University, Ankara-Turkey, 2006
  • [4] J. Hipp, U. Güntzer, and G. Nakhaeizadeh. “Algorithms for association rule mining — a general survey and comparison”, SIGKDD Explor. Newsl. vol. 2, no. 1, pp. 58-64, 2000
  • [5] U. Sezer, “Optimization of Decision Tree with Association Rules” M.Sc. Thesis, Kocaeli University, Kocaeli-Turkey, 2008
  • [6] G. Özdoğan, “Paralel FP-Gowth Application in Cluster Computers” M. Sc. Thesis, TOBB Economy and Technology University, Ankara-Turkey, 2010
  • [7] M. F. Alaeddinoğlu, “Birliktelik Kuralları ile Van Gölü İçin Mekansal-Zamansal Veri Madenciliği” M.Sc. Thesis ATATÜRK University, Erzurum –Turkey, 2012
  • [8] E. Çelikyay, “By the method of text mining, analize of most frequently used and successive words in Turkish and cooccurence rules”, M. Sc. Beykent University, İstanbul- Turkey, 2010
  • [9] R. C. Agarwal, C. C. Aggarwal, V. V. V. Prasad, “A Tree Projection Algorithm for Generation of Frequent Item Sets”, Journal of Parallel and Distributed Computing vol.61, no. 3, pp. 350-371, 2001
  • [10] S. Brin, R. Motwani, J. D. Ullman, S. Tsur. , “Dynamic itemset counting and implication rules for market basket data”, ACM SIGMOD International conference on Management of data, Tucson AZ-USA, 1997
  • [11] B. A. Smith, Building Data Mining Applications for CRM, McGraw-Hill Inc., NY USA, 2002
  • [12] Tsiptsis KK. Chorianopoulos, A. , “Data Mining Techniques in CRM: Inside Customer Segmentation”, Wiley Publication, West Sussex-UK, 2010
  • [13] Dixit V.S., Gupta S. “Personalized Recommender Agent for E-Commerce Products Based on Data Mining Techniques”, Intelligent Systems, Technologies and Applications pp 77-90, 2019
  • [14] Bandyopadhyay S., Thakur S.S., Mandal J.K. , “Product Recommendation for E-Commerce Data Using Association Rule and Apriori Algorithm: Proceedings of the International Conference on Modelling and Simulation”, Modelling and Simulation in Science, Technology and Engineering Mathematics , 2019
  • [15] Samaraweera, Wishma & Waduge, Chekaprabha & Meththananda, Uma. (2016). “Market Basket Analysis: A Profit Based Approach to Apriori Algorithm” , 9th International Research Conference - KDU, Rathmalana, Sri Lanka ,2016
  • [16] Pang-Ning Tan, Michael Steinbach, Vipin Kumar, Introduction to Data Mining, Pearson, 2013
  • [17] Jianjiang Li, Kai Zhang, Xiaolei Yang, Peng Wei, Jie Wang, Karan Mitra, Rajiv Ranjan, “Category Preferred Canopy-K-means based Collaborative Filtering algorithm” Future Generation Computer Systems, vol. 93, pp. 1046-1054 , 2019
  • [18] B. N. Miller, J. A. Konstan, and J. Riedl, “PocketLens: Toward a personal recommender system”, ACM Transactions on Information Systems, vol. 22, no. 3, pp. 437-476, 2014
  • [19] Zhu, X., Su, S., Fu, M., Liu, J., Zhu, L., Yang, W., Jing, G., Guo, Y. “A Cosine Similarity Algorithm Method for Fast and Accurate Monitoring of Dynamic Droplet Generation Processes”, Scientific Reports Jul vol. 2, no. 8-1, pp. 9967, 2018
  • [20] Seven Kosub, “A note on the triangle inequality for the Jaccard distance”, Department of Computer & Information Science, M.Sc. Thesis, University of Konstanz, Konstanz- Germany (2016)
  • [21] Sivri E. Ş., “Veri madenciliği/e-ticaret sitesi için ürün tavsiye sistemi geliştirilmesi”, M.Sc. Thesis, İstanbul Ticaret Üniversitesi İstanbul-Turkey 2015
  • [22] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten, “The WEKA data mining software: an update,” ACM SIGKDD Explorations Newsletter, vol. 11, no. 1, pp. 10–18, 2009

Extracting Association Rules of Turkish Retail Company from Online Transactions: Case Study

Yıl 2019, Cilt: 7 Sayı: 3, 1176 - 1186, 31.07.2019
https://doi.org/10.29130/dubited.510529

Öz

The extracting association
rules of inter-user-product relations used by companies in decision-making
processes have been popular for some time, especially for market basket
analysis. In this study it is aimed to discover association rules from original
online store transaction of a Turkish retail company, in order to help
administrator and decision maker also Customer Relationship Management
department to initiate campaigns. The main objective is to find out which product
item sets are bought together. In order to better compare the results the data
are analyzed with and without clustering according to range of ages and gender.
Data mining Association analysis methods such as Apriori Algorithm, FP-Growth
(Frequent Pattern) then applied which are used to extract association rules.
Moreover some of the collaborative filtering metrics namely Jaccard, Pearson,
and Cosine function are used to understand the association between products to
obtain a recommendation system. The proposed recommendation methods
successfully recommended the associated product for the obtained original
dataset as high as %65 accuracy. Obtained association rules are shared with the
marketing department to initiate and direct forthcoming marketing campaigns.

Kaynakça

  • [1] G. Gürgen, “Birliktelik Kuralları ile Sepet Analizi ve Uygulaması” M.Sc. Thesis Marmara University, İstanbul-Turkey, 2008
  • [2] M. E. Aras, “Birliktelik Kuralları ile web siteleri için tavsiye moturu uygulaması”, M.Sc. Thesis Marmara University, İstanbul- Turkey, 2010
  • [3] A. Kalkov, “Veri Madenciliği ile bir e-ticaret uygulaması” M.Sc. Thesis Gazi University, Ankara-Turkey, 2006
  • [4] J. Hipp, U. Güntzer, and G. Nakhaeizadeh. “Algorithms for association rule mining — a general survey and comparison”, SIGKDD Explor. Newsl. vol. 2, no. 1, pp. 58-64, 2000
  • [5] U. Sezer, “Optimization of Decision Tree with Association Rules” M.Sc. Thesis, Kocaeli University, Kocaeli-Turkey, 2008
  • [6] G. Özdoğan, “Paralel FP-Gowth Application in Cluster Computers” M. Sc. Thesis, TOBB Economy and Technology University, Ankara-Turkey, 2010
  • [7] M. F. Alaeddinoğlu, “Birliktelik Kuralları ile Van Gölü İçin Mekansal-Zamansal Veri Madenciliği” M.Sc. Thesis ATATÜRK University, Erzurum –Turkey, 2012
  • [8] E. Çelikyay, “By the method of text mining, analize of most frequently used and successive words in Turkish and cooccurence rules”, M. Sc. Beykent University, İstanbul- Turkey, 2010
  • [9] R. C. Agarwal, C. C. Aggarwal, V. V. V. Prasad, “A Tree Projection Algorithm for Generation of Frequent Item Sets”, Journal of Parallel and Distributed Computing vol.61, no. 3, pp. 350-371, 2001
  • [10] S. Brin, R. Motwani, J. D. Ullman, S. Tsur. , “Dynamic itemset counting and implication rules for market basket data”, ACM SIGMOD International conference on Management of data, Tucson AZ-USA, 1997
  • [11] B. A. Smith, Building Data Mining Applications for CRM, McGraw-Hill Inc., NY USA, 2002
  • [12] Tsiptsis KK. Chorianopoulos, A. , “Data Mining Techniques in CRM: Inside Customer Segmentation”, Wiley Publication, West Sussex-UK, 2010
  • [13] Dixit V.S., Gupta S. “Personalized Recommender Agent for E-Commerce Products Based on Data Mining Techniques”, Intelligent Systems, Technologies and Applications pp 77-90, 2019
  • [14] Bandyopadhyay S., Thakur S.S., Mandal J.K. , “Product Recommendation for E-Commerce Data Using Association Rule and Apriori Algorithm: Proceedings of the International Conference on Modelling and Simulation”, Modelling and Simulation in Science, Technology and Engineering Mathematics , 2019
  • [15] Samaraweera, Wishma & Waduge, Chekaprabha & Meththananda, Uma. (2016). “Market Basket Analysis: A Profit Based Approach to Apriori Algorithm” , 9th International Research Conference - KDU, Rathmalana, Sri Lanka ,2016
  • [16] Pang-Ning Tan, Michael Steinbach, Vipin Kumar, Introduction to Data Mining, Pearson, 2013
  • [17] Jianjiang Li, Kai Zhang, Xiaolei Yang, Peng Wei, Jie Wang, Karan Mitra, Rajiv Ranjan, “Category Preferred Canopy-K-means based Collaborative Filtering algorithm” Future Generation Computer Systems, vol. 93, pp. 1046-1054 , 2019
  • [18] B. N. Miller, J. A. Konstan, and J. Riedl, “PocketLens: Toward a personal recommender system”, ACM Transactions on Information Systems, vol. 22, no. 3, pp. 437-476, 2014
  • [19] Zhu, X., Su, S., Fu, M., Liu, J., Zhu, L., Yang, W., Jing, G., Guo, Y. “A Cosine Similarity Algorithm Method for Fast and Accurate Monitoring of Dynamic Droplet Generation Processes”, Scientific Reports Jul vol. 2, no. 8-1, pp. 9967, 2018
  • [20] Seven Kosub, “A note on the triangle inequality for the Jaccard distance”, Department of Computer & Information Science, M.Sc. Thesis, University of Konstanz, Konstanz- Germany (2016)
  • [21] Sivri E. Ş., “Veri madenciliği/e-ticaret sitesi için ürün tavsiye sistemi geliştirilmesi”, M.Sc. Thesis, İstanbul Ticaret Üniversitesi İstanbul-Turkey 2015
  • [22] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten, “The WEKA data mining software: an update,” ACM SIGKDD Explorations Newsletter, vol. 11, no. 1, pp. 10–18, 2009
Toplam 22 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Elif Şafak Sivri Bu kişi benim 0000-0002-2782-3360

Mustafa Cem Kasapbaşı 0000-0001-6444-6659

Yayımlanma Tarihi 31 Temmuz 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 7 Sayı: 3

Kaynak Göster

APA Sivri, E. Ş., & Kasapbaşı, M. C. (2019). Türk Perakende Şirketindeki Çevirimiçi Alış Verişler için İlişkililik Kurallarını Çıkarılması: Durum Çalışması. Duzce University Journal of Science and Technology, 7(3), 1176-1186. https://doi.org/10.29130/dubited.510529
AMA Sivri EŞ, Kasapbaşı MC. Türk Perakende Şirketindeki Çevirimiçi Alış Verişler için İlişkililik Kurallarını Çıkarılması: Durum Çalışması. DÜBİTED. Temmuz 2019;7(3):1176-1186. doi:10.29130/dubited.510529
Chicago Sivri, Elif Şafak, ve Mustafa Cem Kasapbaşı. “Türk Perakende Şirketindeki Çevirimiçi Alış Verişler için İlişkililik Kurallarını Çıkarılması: Durum Çalışması”. Duzce University Journal of Science and Technology 7, sy. 3 (Temmuz 2019): 1176-86. https://doi.org/10.29130/dubited.510529.
EndNote Sivri EŞ, Kasapbaşı MC (01 Temmuz 2019) Türk Perakende Şirketindeki Çevirimiçi Alış Verişler için İlişkililik Kurallarını Çıkarılması: Durum Çalışması. Duzce University Journal of Science and Technology 7 3 1176–1186.
IEEE E. Ş. Sivri ve M. C. Kasapbaşı, “Türk Perakende Şirketindeki Çevirimiçi Alış Verişler için İlişkililik Kurallarını Çıkarılması: Durum Çalışması”, DÜBİTED, c. 7, sy. 3, ss. 1176–1186, 2019, doi: 10.29130/dubited.510529.
ISNAD Sivri, Elif Şafak - Kasapbaşı, Mustafa Cem. “Türk Perakende Şirketindeki Çevirimiçi Alış Verişler için İlişkililik Kurallarını Çıkarılması: Durum Çalışması”. Duzce University Journal of Science and Technology 7/3 (Temmuz 2019), 1176-1186. https://doi.org/10.29130/dubited.510529.
JAMA Sivri EŞ, Kasapbaşı MC. Türk Perakende Şirketindeki Çevirimiçi Alış Verişler için İlişkililik Kurallarını Çıkarılması: Durum Çalışması. DÜBİTED. 2019;7:1176–1186.
MLA Sivri, Elif Şafak ve Mustafa Cem Kasapbaşı. “Türk Perakende Şirketindeki Çevirimiçi Alış Verişler için İlişkililik Kurallarını Çıkarılması: Durum Çalışması”. Duzce University Journal of Science and Technology, c. 7, sy. 3, 2019, ss. 1176-8, doi:10.29130/dubited.510529.
Vancouver Sivri EŞ, Kasapbaşı MC. Türk Perakende Şirketindeki Çevirimiçi Alış Verişler için İlişkililik Kurallarını Çıkarılması: Durum Çalışması. DÜBİTED. 2019;7(3):1176-8.