Eriyik Biriktirme Yönteminde Üretim Parametrelerinin Mekanik Özelliklere Ve Parçaların İç Yapısına Etkisinin İncelenmesi
Yıl 2020,
Cilt: 8 Sayı: 1, 617 - 630, 31.01.2020
Efecan Karaman
,
Oğuz Çolak
Öz
Eriyik biriktirme yöntemi
termoplastik esaslı malzemelerin yarı eriyik hale getirilerek birbiri üstüne
katman katman yığılması ile üretim gerçekleştiren bir eklemeli imalat
teknolojisidir. Eklemeli imalatta plastik esaslı parçaların üretimi için
kullanılabilecek birçok teknoloji bulunmasına karşın, düşük maliyet, düşük
artık malzeme oranları ve kullanım kolaylığı gibi nedenlerle en çok tercih
edilen yöntem eriyik biriktirme yöntemidir. Yöntem sunduğu avantajların yanı
sıra birçok üretim parametresine sahiptir. Bu parametreler üretilen parçaların
mekanik özellikleri üzerinde etkili olmaktadır. Bu çalışmada üretim açısı ve
doluluk oranı olmak üzere iki farklı üretim parametresi kullanılarak, ABS Plus
ve karbon elyaf takviyeli ABS kompozit malzemelerinden test numuneleri
üretilmiş ve üretilen numunelere çekme testleri uygulanmıştır. Çekme testleri
sonucu üretim parametrelerinin parçaların mekanik özellikleri üzerindeki
etkileri incelenmiştir. Kırık yüzeylerden Taramalı Elektron Mikroskobu (SEM)
görüntüleri alınarak, üretim parametrelerinin parça içyapısında meydana
getirdiği değişimler değerlendirilmiştir. Elde edilen sonuçlarda, doluluk oranının
artması tüm numunelerde iyi mekanik özellikler gösterirken, farklı üretim
açılarının mekanik özellikler üzerinde önemli etkiye sahip olduğu görülmüştür.
Destekleyen Kurum
Anadolu Üniversitesi Bilimsel Araştırma Projeleri
Teşekkür
Bu çalışma Anadolu Üniversitesi Bilimsel Araştırma Projeleri tarafından desteklenmiştir (Proje no: 1605F440).
Kaynakça
- [1] A. L. Verhoef, B. W. Budde, C. Chockalingam, B. G. Nodar ve A. J. van Wijk, “The effect of additive manufacturing on global energy demand: An assessment using a bottom-up approach,” Energy Policy, c. 112, ss. 349-360, 2018.
- [2] I. Gibson, W. D. Rosen ve B. Stucker, Additive manufacturing technologies, 2. Baskı, New York, USA: Springer, 2010, ss. 147-173.
- [3] B. Sağbaş, “Surface texture characterization and parameter optimization of fused deposition modelling process,” Düzce Üniversitesi Bilim ve Teknoloji Dergisi, c. 6, s .4, ss. 1028-1037, 2018.
- [4] K. J. Christiyan, U. Chandrasekhar, K. Venkateswarlu, “A study on the influence of process parameters on the Mechanical Properties of 3D printed ABS composite,” IOP Conference Series: Materials Science and Engineering, c. 114, s. 1, 2016.
- [5] J. M. Chacón, M. A. Caminero, E. García-Plaza, P. J. Núñez, “Additive manufacturing of PLA structures using fused deposition modelling: Effect of process parameters on mechanical properties and their optimal selection,” Materials & Design, c. 124, ss. 143-157, 2017.
- [6] T. J. Coogan, D. O. Kazmer, “Bond and part strength in fused deposition modeling,” Rapid Prototyping Journal, c. 23, s. 2, ss. 414-422, 2017.
- [7] B. M. Tymrak, M. Kreiger and J. M. Pearce, “Mechanical properties of components fabricated with open-source 3-D printers under realistic environmental conditions,” Materials and Design, c. 58, ss. 242-246, 2014.
- [8] P. J. Nuñez, A. Rivas, E. García-Plaza, E. Beamud and A. Sanz-Lobera, “Dimensional and surface texture characterization in fused deposition modelling (FDM) with ABS Plus,” Procedia Engineering, c. 132, ss. 856-863, 2015.
- [9] M. Fernandez-Vicente, W. Calle, S. Ferrandiz, A. Conejero, “Effect of infill parameters on tensile mechanical behavior in desktop 3D printing,” 3D printing and additive manufacturing, c. 3, s. 3, ss. 183-192, 2016.
- [10] M. Vishwas, C. K. Basavaraj, M. Vinyas, “Experimental investigation using taguchi method to optimize process parameters of fused deposition Modeling for ABS and nylon materials,” Materials Today: Proceedings, c. 5 s. 2, ss. 7106-7114, 2018.
- [11] M. Kam, H. Saruhan, A. İpekçi, “Farklı doldurma şekillerinin üç boyutlu yazıcılarda üretilen ürünlerin mukavemetine etkisi,” Düzce Üniversitesi Bilim ve Teknoloji Dergisi, c. 7, s. 3, ss. 951-960, 2019.
- [12] W. Zhong, F. Li, Z. Zhang, L. Song ve Z. Li, “Short fiber reinforced composites for fused deposition modeling,” Materials Science and Engineering: A, c. 301, s. 2, ss.125-130, 2001.
- [13] R. Matsuzaki, M. Ueda, M. Namiki, T. K. Jeong, H. Asahara, K. Horiguchi ve Y. Hirano, “Three-dimensional printing of continuous-fiber composites by in-nozzle impregnation,” Scientific reports, c. 6, ss.1-7, 2016.
- [14] S. Dul, L. Fambri ve A. Pegoretti, “Fused deposition modelling with ABS–graphene nanocomposites,” Composites Part A, c. 85, ss.181-191, 2016.
- [15] F. Ning, W. Cong, J. Qiu, J. Wei ve S. Wang, “Additive manufacturing of carbon fiber reinforced thermoplastic composites using fused deposition modeling,” Composites Part B, c. 80, ss.369-378, 2015.
- [16] L. J. Love, V. Kunc, O. Rios, C. E. Duty, A. M. Elliott, B. K. Post, C. A. Blue, “The importance of carbon fiber to polymer additive manufacturing,” Journal of Materials Research, c. 29, s. 17, ss. 1893-1898, 2014.
- [17] L. G. Blok, M. L. Longana, H. Yu, B. K. Woods, “An investigation into 3D printing of fibre reinforced thermoplastic composites,” Additive Manufacturing, c. 22, ss. 176-186, 2018.
- [18] I. Fidan, A. Imeri, A. Gupta, S. Hasanov, A. Nasirov, A. Elliott, N. Nanami, “The trends and challenges of fiber reinforced additive manufacturing,” The International Journal of Advanced Manufacturing Technology, c. 102 s.5-8, ss. 1801-1818, 2019.
- [19] T. N. A. T. Rahim, A. M. Abdullah, H. Md Akil, “Recent Developments in Fused Deposition Modeling-Based 3D Printing of Polymers and Their Composites,” Polymer Reviews, c. 59, s. 4, ss. 589-624, 2019.
- [20] F. Ning, W. Cong, Y. Hu, H. Wang, “Additive manufacturing of carbon fiber-reinforced plastic composites using fused deposition modeling: Effects of process parameters on tensile properties,” Journal of Composite Materials, c. 51, s. 4, ss. 451-462, 2017.
- [21] R. T. L. Ferreira, I. C. Amatte, T. A. Dutra, D. Bürger, “Experimental characterization and micrography of 3D printed PLA and PLA reinforced with short carbon fibers,” Composites Part B: Engineering, c. 124, ss. 88-100, 2017.
- [22] B. J. Lopes, J. R. M. d’Almeida, “Development And Characterization Of Carbon Fiber Reinforced Thermoplastics–Part B: Mechanical Properties And Microstructural Analysis,” 4th Brazilian Conference on Composite Materials, Rio de Janeiro, Brazil, 2018.
- [23] H. L. Tekinalp, V. Kunc, G. M. Velez-Garcia, C. E. Duty, L. J. Love, A. K. Naskar and S. Ozcan, “Highly oriented carbon fiber–polymer composites via additive manufacturing,” Composites Science and Technology, c. 105, ss. 144-150, 2014.
- [24] A. Qattawi, “Investigating the effect of fused deposition modeling processing parameters using Taguchi design of experiment method,” Journal of Manufacturing Processes, c. 36, ss. 164-174, 2018.
- [25] D. Jiang, D. E. Smith, “Anisotropic mechanical properties of oriented carbon fiber filled polymer composites produced with fused filament fabrication,” Additive Manufacturing, c. 18, ss. 84-94, 2017.
- [26] N. G. Tanikella, B. Wittbrodt, J. M. Pearce, “Tensile strength of commercial polymer materials for fused filament fabrication 3D printing,” Additive Manufacturing, c. 15, ss. 40-47, 2017.
The Effects of Process Parameters on Mechanical Properties and Microstructures of Parts in Fused Deposition Modeling
Yıl 2020,
Cilt: 8 Sayı: 1, 617 - 630, 31.01.2020
Efecan Karaman
,
Oğuz Çolak
Öz
Fused deposition
modeling is an additive manufacturing technology that produces parts layer by
layer deposition of semi molten thermoplastic materials. Although there are
many technologies that can be used for the production of plastic based parts in
additive manufacturing, the most preferred method is Fused deposition modeling
due to low costs, minimal wastage and the ease of use. In addition to the
advantages of the method, it has many process parameters. These parameters have
an effect on the mechanical properties of the manufactured parts. In this
study, test samples were produced from ABS Plus and carbon fiber reinforced ABS
composite materials by using two different process parameters as build angle
and infill density then tensile tests were performed on the produced samples.
As a result of tensile tests, the effects of the process parameters on the
mechanical properties of the parts were investigated. Scanning electron
microscopy images were taken from the fracture surfaces and the changes caused
by the process parameters were evaluated. The results show that the increase in
the infill density exhibited an increase in the mechanical properties in all
parts and the different build angles have significant effect on determination of
mechanical properties.
Kaynakça
- [1] A. L. Verhoef, B. W. Budde, C. Chockalingam, B. G. Nodar ve A. J. van Wijk, “The effect of additive manufacturing on global energy demand: An assessment using a bottom-up approach,” Energy Policy, c. 112, ss. 349-360, 2018.
- [2] I. Gibson, W. D. Rosen ve B. Stucker, Additive manufacturing technologies, 2. Baskı, New York, USA: Springer, 2010, ss. 147-173.
- [3] B. Sağbaş, “Surface texture characterization and parameter optimization of fused deposition modelling process,” Düzce Üniversitesi Bilim ve Teknoloji Dergisi, c. 6, s .4, ss. 1028-1037, 2018.
- [4] K. J. Christiyan, U. Chandrasekhar, K. Venkateswarlu, “A study on the influence of process parameters on the Mechanical Properties of 3D printed ABS composite,” IOP Conference Series: Materials Science and Engineering, c. 114, s. 1, 2016.
- [5] J. M. Chacón, M. A. Caminero, E. García-Plaza, P. J. Núñez, “Additive manufacturing of PLA structures using fused deposition modelling: Effect of process parameters on mechanical properties and their optimal selection,” Materials & Design, c. 124, ss. 143-157, 2017.
- [6] T. J. Coogan, D. O. Kazmer, “Bond and part strength in fused deposition modeling,” Rapid Prototyping Journal, c. 23, s. 2, ss. 414-422, 2017.
- [7] B. M. Tymrak, M. Kreiger and J. M. Pearce, “Mechanical properties of components fabricated with open-source 3-D printers under realistic environmental conditions,” Materials and Design, c. 58, ss. 242-246, 2014.
- [8] P. J. Nuñez, A. Rivas, E. García-Plaza, E. Beamud and A. Sanz-Lobera, “Dimensional and surface texture characterization in fused deposition modelling (FDM) with ABS Plus,” Procedia Engineering, c. 132, ss. 856-863, 2015.
- [9] M. Fernandez-Vicente, W. Calle, S. Ferrandiz, A. Conejero, “Effect of infill parameters on tensile mechanical behavior in desktop 3D printing,” 3D printing and additive manufacturing, c. 3, s. 3, ss. 183-192, 2016.
- [10] M. Vishwas, C. K. Basavaraj, M. Vinyas, “Experimental investigation using taguchi method to optimize process parameters of fused deposition Modeling for ABS and nylon materials,” Materials Today: Proceedings, c. 5 s. 2, ss. 7106-7114, 2018.
- [11] M. Kam, H. Saruhan, A. İpekçi, “Farklı doldurma şekillerinin üç boyutlu yazıcılarda üretilen ürünlerin mukavemetine etkisi,” Düzce Üniversitesi Bilim ve Teknoloji Dergisi, c. 7, s. 3, ss. 951-960, 2019.
- [12] W. Zhong, F. Li, Z. Zhang, L. Song ve Z. Li, “Short fiber reinforced composites for fused deposition modeling,” Materials Science and Engineering: A, c. 301, s. 2, ss.125-130, 2001.
- [13] R. Matsuzaki, M. Ueda, M. Namiki, T. K. Jeong, H. Asahara, K. Horiguchi ve Y. Hirano, “Three-dimensional printing of continuous-fiber composites by in-nozzle impregnation,” Scientific reports, c. 6, ss.1-7, 2016.
- [14] S. Dul, L. Fambri ve A. Pegoretti, “Fused deposition modelling with ABS–graphene nanocomposites,” Composites Part A, c. 85, ss.181-191, 2016.
- [15] F. Ning, W. Cong, J. Qiu, J. Wei ve S. Wang, “Additive manufacturing of carbon fiber reinforced thermoplastic composites using fused deposition modeling,” Composites Part B, c. 80, ss.369-378, 2015.
- [16] L. J. Love, V. Kunc, O. Rios, C. E. Duty, A. M. Elliott, B. K. Post, C. A. Blue, “The importance of carbon fiber to polymer additive manufacturing,” Journal of Materials Research, c. 29, s. 17, ss. 1893-1898, 2014.
- [17] L. G. Blok, M. L. Longana, H. Yu, B. K. Woods, “An investigation into 3D printing of fibre reinforced thermoplastic composites,” Additive Manufacturing, c. 22, ss. 176-186, 2018.
- [18] I. Fidan, A. Imeri, A. Gupta, S. Hasanov, A. Nasirov, A. Elliott, N. Nanami, “The trends and challenges of fiber reinforced additive manufacturing,” The International Journal of Advanced Manufacturing Technology, c. 102 s.5-8, ss. 1801-1818, 2019.
- [19] T. N. A. T. Rahim, A. M. Abdullah, H. Md Akil, “Recent Developments in Fused Deposition Modeling-Based 3D Printing of Polymers and Their Composites,” Polymer Reviews, c. 59, s. 4, ss. 589-624, 2019.
- [20] F. Ning, W. Cong, Y. Hu, H. Wang, “Additive manufacturing of carbon fiber-reinforced plastic composites using fused deposition modeling: Effects of process parameters on tensile properties,” Journal of Composite Materials, c. 51, s. 4, ss. 451-462, 2017.
- [21] R. T. L. Ferreira, I. C. Amatte, T. A. Dutra, D. Bürger, “Experimental characterization and micrography of 3D printed PLA and PLA reinforced with short carbon fibers,” Composites Part B: Engineering, c. 124, ss. 88-100, 2017.
- [22] B. J. Lopes, J. R. M. d’Almeida, “Development And Characterization Of Carbon Fiber Reinforced Thermoplastics–Part B: Mechanical Properties And Microstructural Analysis,” 4th Brazilian Conference on Composite Materials, Rio de Janeiro, Brazil, 2018.
- [23] H. L. Tekinalp, V. Kunc, G. M. Velez-Garcia, C. E. Duty, L. J. Love, A. K. Naskar and S. Ozcan, “Highly oriented carbon fiber–polymer composites via additive manufacturing,” Composites Science and Technology, c. 105, ss. 144-150, 2014.
- [24] A. Qattawi, “Investigating the effect of fused deposition modeling processing parameters using Taguchi design of experiment method,” Journal of Manufacturing Processes, c. 36, ss. 164-174, 2018.
- [25] D. Jiang, D. E. Smith, “Anisotropic mechanical properties of oriented carbon fiber filled polymer composites produced with fused filament fabrication,” Additive Manufacturing, c. 18, ss. 84-94, 2017.
- [26] N. G. Tanikella, B. Wittbrodt, J. M. Pearce, “Tensile strength of commercial polymer materials for fused filament fabrication 3D printing,” Additive Manufacturing, c. 15, ss. 40-47, 2017.