Araştırma Makalesi
BibTex RIS Kaynak Göster

R134a'ya Alternatif Bir Soğutucu Akışkan (R513A) Kullanan Buhar Sıkıştırmalı Soğutma Sistemlerinin Enerji ve Çevresel Analizi

Yıl 2020, Cilt: 8 Sayı: 3, 1817 - 1828, 31.07.2020
https://doi.org/10.29130/dubited.690197

Öz

Küresel ısınma Dünya gündeminin ana konularından birisidir. Dolayısıyla, soğutucu akışkanların çevresel etkilerini azaltmak için birçok çalışma ve düzenleme yapılmaktadır. Çevre dostu soğutucu akışkanların kullanılması soğutucu akışkanların çevre üzerinde olumsuz etkisinin azaltılması için gereklidir. Düşük küresel ısınma potansiyeline (GWP) sahip HFC/HFO soğutucu akışkan karışımları HFC soğutucu akışkanların yerini aldığı düşünülmekte ve son zamanlarda ticari olarak üretilmektedirler. Bu çalışmada, R134a ve R513A soğutucu akışkanlarının performansları teorik olarak incelenmiştir. Ayrıca soğutucu akışkanların çevresel etki değerlendirilmesi yaşamsal döngü iklim performansına (LCCP) göre incelenmiştir. Soğutucu akışkanların enerji performansları farklı evaporatör (-15 ile 2.5 oC arasında) ve kondenser (30 ve 35 oC) sıcaklıkları için yapılmıştır. Evaportaör sıcaklığı -15 oC ve kondenser sıcaklığı 30 oC iken R134a ve R513A’nın COP değerleri sırasıyla 3.87 ve 3.77’dir. Aynı kondenser sıcaklığı için evaporatör sıcaklığı 2.5 oC olduğunda R134a ve R513A’nın COP değerleri sırasıyla 7.28 ve 7.16 olmaktadır. Dolaysıyla R134a ve R513A’nın COP değerlerinin hemen hemen benzer olduğu söylenebilir. R513A’nın GWP oranı R134a’nın yaklaşık yarısı kadardır. Dolayısıyla R513A R134a’dan %56 oranında daha az direkt emisyon (DE) değerine sahip olduğu görülmüştür. Her iki soğutucu akışkanın toplam emisyon değerinin büyük bir çoğunluğu (R134a için %94.98, R513A için %96.77) sistemin enerji tüketiminden kaynaklanmaktadır. R513A soğutucu akışkanın yanıcılık özelliğinin yoktur ayrıca doğrudan R134a ile çalışan sistemde herhangi bir değişiklik yapmadan kullanılabilir. R513A yukarıda saydığımız özelliklerden dolayı R134a’ya alternatif olarak kullanılabilir.

Kaynakça

  • [1] A. Mota-Babiloni, “Analysis of low global warming potential fluoride working fluids in vapour compression systems. Experimental evaluation of commercial refrigeration alternatives,” Universitat Politècnica de València, Valencia (Spain), 2016.
  • [2] S. Bobbo et al., “Energetic and Exergetic Analysis of Low Global Warming Potential Refrigerants as Substitutes for R410A in Ground Source Heat Pumps,” Energies, vol. 12, no. 18, p. 3538, Sep. 2019.
  • [3] H. Ozcan, “Performance determination of alternative refrigerants by usingexergy method,” Karabük University, 2011.
  • [4] Z. Yang and X. Wu, “Retrofits and options for the alternatives to HCFC-22,” Energy, vol. 59. Elsevier Ltd, pp. 1–21, 15-Sep-2013.
  • [5] G. Li, M. Eisele, H. Lee, Y. Hwang, and R. Radermacher, “Experimental investigation of energy and exergy performance of secondary loop automotive air-conditioning systems using low-GWP (global warming potential) refrigerants,” Energy, vol. 68, pp. 819–831, Apr. 2014.
  • [6] A. Mota-Babiloni, J. Navarro-Esbrí, Á. Barragán, F. Molés, and B. Peris, “Drop-in energy performance evaluation of R1234yf and R1234ze(E) in a vapor compression system as R134a replacements,” Appl. Therm. Eng., vol. 71, no. 1, pp. 259–265, Oct. 2014.
  • [7] B. Feng, Z. Yang, and R. Zhai, “Experimental study on the influence of the flame retardants on the flammability of R1234yf,” Energy, vol. 143, pp. 212–218, Jan. 2018.
  • [8] C. Zilio, J. S. Brown, G. Schiochet, and A. Cavallini, “The refrigerant R1234yf in air conditioning systems,” Energy, vol. 36, no. 10, pp. 6110–6120, 2011.
  • [9] D. A. Didion and D. B. Bivens, “Role of refrigerant mixtures as alternatives to CFCs,” Int. J. Refrig., vol. 13, no. 3, pp. 163–175, 1990.
  • [10] M. Höbberg and T. Berntsson, “Non-azeotropic mixtures as working fluids in two-stage economizer-type heat pumps,” Int. J. Refrig., vol. 17, no. 6, pp. 417–429, 1994.
  • [11] A. Mota-Babiloni, P. Makhnatch, R. Khodabandeh, and J. Navarro-Esbrí, “Experimental assessment of R134a and its lower GWP alternative R513A,” Int. J. Refrig., vol. 74, pp. 680–686, Feb. 2017.
  • [12] A. Mota-Babiloni, J. M. Belman-Flores, P. Makhnatch, J. Navarro-Esbrí, and J. M. Barroso-Maldonado, “Experimental exergy analysis of R513A to replace R134a in a small capacity refrigeration system,” Energy, vol. 162, pp. 99–110, Nov. 2018.
  • [13] R. Llopis, D. Sánchez, R. Cabello, J. Catalán-Gil, and L. Nebot-Andrés, “Experimental analysis of R-450A and R-513A as replacements of R-134a and R-507A in a medium temperature commercial refrigeration system,” Int. J. Refrig., vol. 84, pp. 52–66, Dec. 2017.
  • [14] Z. Meng, H. Zhang, M. Lei, Y. Qin, and J. Qiu, “Performance of low GWP R1234yf/R134a mixture as a replacement for R134a in automotive air conditioning systems,” Int. J. Heat Mass Transf., vol. 116, pp. 362–370, 2018.
  • [15] C. Aprea, A. Greco, and A. Maiorino, “An experimental investigation of the energetic performances of HFO1234yf and its binary mixtures with HFC134a in a household refrigerator,” Int. J. Refrig., vol. 76, pp. 109–117, 2017.
  • [16] C. Aprea, A. Greco, and A. Maiorino, “HFOs and their binary mixtures with HFC134a working as drop-in refrigerant in a household refrigerator: Energy analysis and environmental impact assessment,” Appl. Therm. Eng., vol. 141, pp. 226–233, 2018.
  • [17] Y. Lee, D. G. Kang, and D. Jung, “Performance of virtually non-flammable azeotropic HFO1234yf/HFC134a mixture for HFC134a applications,” Int. J. Refrig., vol. 36, no. 4, pp. 1203–1207, 2013.
  • [18] L. Zhang, J. Zhao, L. Yue, H. Zhou, and C. Ren, “Cycle performance evaluation of various R134a/hydrocarbon blend refrigerants applied in vapor-compression heat pumps,” Adv. Mech. Eng., vol. 11, no. 1, 2019.
  • [19] IIR, “Guideline for Life Cycle Climate Performance,” 2016.
  • [20] S. Choi, J. Oh, Y. Hwang, and H. Lee, “Life cycle climate performance evaluation (LCCP) on cooling and heating systems in South Korea,” Appl. Therm. Eng., vol. 120, pp. 88–98, 2017.
  • [21] B. Atilgan and A. Azapagic, “Assessing the Environmental Sustainability of Electricity Generation in Turkey on a Life Cycle Basis,” Energies, vol. 9, no. 1, p. 31, 2016.

Energy and Environmental Analysis of Vapor Compression Refrigeration Systems Using an Alternative Refrigerant (R513A) to R134a

Yıl 2020, Cilt: 8 Sayı: 3, 1817 - 1828, 31.07.2020
https://doi.org/10.29130/dubited.690197

Öz

Global warming is one of the main topics of the world agenda. Therefore, many studies and arrangements are made to reduce the environmental effects of refrigerants. The use of environmentally friendly refrigerants is necessary to reduce the negative impact of refrigerants on the environment. HFC / HFO refrigerant mixtures with low global warming potential (GWP) are thought to replace HFC refrigerants and have been produced commercially recently. In this study, the performances of R134a and R513A refrigerants are theoretically investigated. In addition, environmental impact assessment of refrigerants has been examined according to the life cycle climate performance (LCCP). Energy performances of refrigerants have been made for different evaporator (between -15 and 2.5 °C) and condenser (30 and 35 °C) temperatures. While evaporator temperature is -15 °C and condenser temperature is 30 °C, the COP values of R134a and R513A are 3.87 and 3.77 respectively. When the evaporator temperature is 2.5 °C and condenser temperature is 30 °C, the COP values of R134a and R513A are 7.28 and 7.16, respectively. Therefore, the COP values of R134a and R513A are almost similar. The GWP ratio of R513A is about half of R134a. Therefore, it has been observed that R513A has 56% less direct emission (DE) value than R134a. The majority of the total emission value of both refrigerants (94.98% for R134a, 96.77% for R513A) is due to the energy consumption of the system. The COP value of R513A refrigerant is almost the same as R134a and the total emission (LCCP) value of R513A is lower than R134a. R513A refrigerant does not have flammability, and it can be used directly in the system working with R134a without any changes. R513A can be used as an alternative to R134a due to the features mentioned above.

Kaynakça

  • [1] A. Mota-Babiloni, “Analysis of low global warming potential fluoride working fluids in vapour compression systems. Experimental evaluation of commercial refrigeration alternatives,” Universitat Politècnica de València, Valencia (Spain), 2016.
  • [2] S. Bobbo et al., “Energetic and Exergetic Analysis of Low Global Warming Potential Refrigerants as Substitutes for R410A in Ground Source Heat Pumps,” Energies, vol. 12, no. 18, p. 3538, Sep. 2019.
  • [3] H. Ozcan, “Performance determination of alternative refrigerants by usingexergy method,” Karabük University, 2011.
  • [4] Z. Yang and X. Wu, “Retrofits and options for the alternatives to HCFC-22,” Energy, vol. 59. Elsevier Ltd, pp. 1–21, 15-Sep-2013.
  • [5] G. Li, M. Eisele, H. Lee, Y. Hwang, and R. Radermacher, “Experimental investigation of energy and exergy performance of secondary loop automotive air-conditioning systems using low-GWP (global warming potential) refrigerants,” Energy, vol. 68, pp. 819–831, Apr. 2014.
  • [6] A. Mota-Babiloni, J. Navarro-Esbrí, Á. Barragán, F. Molés, and B. Peris, “Drop-in energy performance evaluation of R1234yf and R1234ze(E) in a vapor compression system as R134a replacements,” Appl. Therm. Eng., vol. 71, no. 1, pp. 259–265, Oct. 2014.
  • [7] B. Feng, Z. Yang, and R. Zhai, “Experimental study on the influence of the flame retardants on the flammability of R1234yf,” Energy, vol. 143, pp. 212–218, Jan. 2018.
  • [8] C. Zilio, J. S. Brown, G. Schiochet, and A. Cavallini, “The refrigerant R1234yf in air conditioning systems,” Energy, vol. 36, no. 10, pp. 6110–6120, 2011.
  • [9] D. A. Didion and D. B. Bivens, “Role of refrigerant mixtures as alternatives to CFCs,” Int. J. Refrig., vol. 13, no. 3, pp. 163–175, 1990.
  • [10] M. Höbberg and T. Berntsson, “Non-azeotropic mixtures as working fluids in two-stage economizer-type heat pumps,” Int. J. Refrig., vol. 17, no. 6, pp. 417–429, 1994.
  • [11] A. Mota-Babiloni, P. Makhnatch, R. Khodabandeh, and J. Navarro-Esbrí, “Experimental assessment of R134a and its lower GWP alternative R513A,” Int. J. Refrig., vol. 74, pp. 680–686, Feb. 2017.
  • [12] A. Mota-Babiloni, J. M. Belman-Flores, P. Makhnatch, J. Navarro-Esbrí, and J. M. Barroso-Maldonado, “Experimental exergy analysis of R513A to replace R134a in a small capacity refrigeration system,” Energy, vol. 162, pp. 99–110, Nov. 2018.
  • [13] R. Llopis, D. Sánchez, R. Cabello, J. Catalán-Gil, and L. Nebot-Andrés, “Experimental analysis of R-450A and R-513A as replacements of R-134a and R-507A in a medium temperature commercial refrigeration system,” Int. J. Refrig., vol. 84, pp. 52–66, Dec. 2017.
  • [14] Z. Meng, H. Zhang, M. Lei, Y. Qin, and J. Qiu, “Performance of low GWP R1234yf/R134a mixture as a replacement for R134a in automotive air conditioning systems,” Int. J. Heat Mass Transf., vol. 116, pp. 362–370, 2018.
  • [15] C. Aprea, A. Greco, and A. Maiorino, “An experimental investigation of the energetic performances of HFO1234yf and its binary mixtures with HFC134a in a household refrigerator,” Int. J. Refrig., vol. 76, pp. 109–117, 2017.
  • [16] C. Aprea, A. Greco, and A. Maiorino, “HFOs and their binary mixtures with HFC134a working as drop-in refrigerant in a household refrigerator: Energy analysis and environmental impact assessment,” Appl. Therm. Eng., vol. 141, pp. 226–233, 2018.
  • [17] Y. Lee, D. G. Kang, and D. Jung, “Performance of virtually non-flammable azeotropic HFO1234yf/HFC134a mixture for HFC134a applications,” Int. J. Refrig., vol. 36, no. 4, pp. 1203–1207, 2013.
  • [18] L. Zhang, J. Zhao, L. Yue, H. Zhou, and C. Ren, “Cycle performance evaluation of various R134a/hydrocarbon blend refrigerants applied in vapor-compression heat pumps,” Adv. Mech. Eng., vol. 11, no. 1, 2019.
  • [19] IIR, “Guideline for Life Cycle Climate Performance,” 2016.
  • [20] S. Choi, J. Oh, Y. Hwang, and H. Lee, “Life cycle climate performance evaluation (LCCP) on cooling and heating systems in South Korea,” Appl. Therm. Eng., vol. 120, pp. 88–98, 2017.
  • [21] B. Atilgan and A. Azapagic, “Assessing the Environmental Sustainability of Electricity Generation in Turkey on a Life Cycle Basis,” Energies, vol. 9, no. 1, p. 31, 2016.
Toplam 21 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Abdullah Yıldız 0000-0003-4831-0975

Ragıp Yıldırım 0000-0003-0902-3420

Yayımlanma Tarihi 31 Temmuz 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 8 Sayı: 3

Kaynak Göster

APA Yıldız, A., & Yıldırım, R. (2020). R134a’ya Alternatif Bir Soğutucu Akışkan (R513A) Kullanan Buhar Sıkıştırmalı Soğutma Sistemlerinin Enerji ve Çevresel Analizi. Duzce University Journal of Science and Technology, 8(3), 1817-1828. https://doi.org/10.29130/dubited.690197
AMA Yıldız A, Yıldırım R. R134a’ya Alternatif Bir Soğutucu Akışkan (R513A) Kullanan Buhar Sıkıştırmalı Soğutma Sistemlerinin Enerji ve Çevresel Analizi. DÜBİTED. Temmuz 2020;8(3):1817-1828. doi:10.29130/dubited.690197
Chicago Yıldız, Abdullah, ve Ragıp Yıldırım. “R134a’ya Alternatif Bir Soğutucu Akışkan (R513A) Kullanan Buhar Sıkıştırmalı Soğutma Sistemlerinin Enerji Ve Çevresel Analizi”. Duzce University Journal of Science and Technology 8, sy. 3 (Temmuz 2020): 1817-28. https://doi.org/10.29130/dubited.690197.
EndNote Yıldız A, Yıldırım R (01 Temmuz 2020) R134a’ya Alternatif Bir Soğutucu Akışkan (R513A) Kullanan Buhar Sıkıştırmalı Soğutma Sistemlerinin Enerji ve Çevresel Analizi. Duzce University Journal of Science and Technology 8 3 1817–1828.
IEEE A. Yıldız ve R. Yıldırım, “R134a’ya Alternatif Bir Soğutucu Akışkan (R513A) Kullanan Buhar Sıkıştırmalı Soğutma Sistemlerinin Enerji ve Çevresel Analizi”, DÜBİTED, c. 8, sy. 3, ss. 1817–1828, 2020, doi: 10.29130/dubited.690197.
ISNAD Yıldız, Abdullah - Yıldırım, Ragıp. “R134a’ya Alternatif Bir Soğutucu Akışkan (R513A) Kullanan Buhar Sıkıştırmalı Soğutma Sistemlerinin Enerji Ve Çevresel Analizi”. Duzce University Journal of Science and Technology 8/3 (Temmuz 2020), 1817-1828. https://doi.org/10.29130/dubited.690197.
JAMA Yıldız A, Yıldırım R. R134a’ya Alternatif Bir Soğutucu Akışkan (R513A) Kullanan Buhar Sıkıştırmalı Soğutma Sistemlerinin Enerji ve Çevresel Analizi. DÜBİTED. 2020;8:1817–1828.
MLA Yıldız, Abdullah ve Ragıp Yıldırım. “R134a’ya Alternatif Bir Soğutucu Akışkan (R513A) Kullanan Buhar Sıkıştırmalı Soğutma Sistemlerinin Enerji Ve Çevresel Analizi”. Duzce University Journal of Science and Technology, c. 8, sy. 3, 2020, ss. 1817-28, doi:10.29130/dubited.690197.
Vancouver Yıldız A, Yıldırım R. R134a’ya Alternatif Bir Soğutucu Akışkan (R513A) Kullanan Buhar Sıkıştırmalı Soğutma Sistemlerinin Enerji ve Çevresel Analizi. DÜBİTED. 2020;8(3):1817-28.