Araştırma Makalesi
BibTex RIS Kaynak Göster

Sürekli Mıknatıslı Senkron Motorun Hız Takip Sistemi için Uygun Kesirli PI Kontrolör Tasarımı ve Optimizasyonu

Yıl 2021, Cilt: 9 Sayı: 3 - Ek Sayı, 130 - 144, 29.05.2021
https://doi.org/10.29130/dubited.756999

Öz

Son yıllarda, endüstride kullanılan değişken hızlı tahrik sistemlerinde verimliliği artırma ihtiyacını karşılamak için sürekli mıknatıslı senkron motor (PMSM) kullanımı hızla artmaktadır. Bu makalede PMSM tabanlı hız kontrol sistemlerinin performansının artırılması hedeflenmektedir. Bu amaçla, uygun kesirli oransal-integral (CFOPI) tabanlı PMSM hız kontrolörü tasarlanmıştır. CFOPI kontrolör katsayıları kp, ki ve γ yanıt yüzey metodu (RSM) kullanılarak optimize edilmiştir. Önerilen sistemin başarısının kanıtlanması için CFOPI ve tamsayılı PI (IOPI) kontrolörler aynı simülasyon modeli üzerinde test edilmiş ve sonuçları karşılaştırılmıştır. Önerilen yöntem klasik kesirli kontrolörlere göre daha az hesaplama yüküne sahiptir ve değişken referanslı PMSM hız izleme sistemleri için daha dayanıklı performans sağlamaktadır. CFOPI kontrolörü, PMSM kullanan endüstriyel değişken hızlı tahrik sistemlerinin performansını ve kararlılığını artırmak için kolaylıkla uygulanabilir.

Kaynakça

  • [1] J. -I. Itoh, N. Nomura and H. Ohsawa, "A comparison between V/f control and position-sensorless vector control for the permanent magnet synchronous motor," Proceedings of the Power Conversion Conference (Cat. No.02TH8579), 1310-1315,3, Osaka, Japan, 2002.
  • [2] P. D. C. Perera, F. Blaabjerg, J. K. Pedersen and P. Thogersen, "A sensorless, stable V/f control method for permanent-magnet synchronous motor drives," IEEE Transactions on Industry Applications, vol 39, no 3, pp 783-791, 2003.
  • [3] R. Khalil, M. Al Horani, A. Yousef and M. Sababheh, “A new definition of fractional derivative” Journal of Computational and Applied Mathematics, vol 264, pp 65-70, 2014.
  • [4] F. F. El-Sousy, “Intelligent optimal recurrent wavelet Elman neural network control system for permanent-magnet synchronous motor servo drive”, IEEE Transactions on Industrial Informatics, vol 9, no 4, pp 1986-2003, 2012.
  • [5] M. Demirtas, E. Ilten and H. Calgan, “Pareto-based multi-objective optimization for fractional order PIλ speed control of induction motor by using elman neural network”, Arabian Journal for Science and Engineering, 44(3), 2165-2175, 2019.
  • [6] F. Kheyrinataj and A. Nazemi, “Fractional Chebyshev functional link neural network‐optimization method for solving delay fractional optimal control problems with Atangana‐Baleanu derivative”, Optimal Control Applications and Methods, 41(3), 808-832, 2020.
  • [7] K. Y. Cheng and Y. Y. Tzou, “Fuzzy optimization techniques applied to the design of a digital PMSM servo drive”, IEEE Transactions on Power Electronics, 19(4), 1085-1099, 2004.
  • [8] F. Hicham, D. Yousfi, A. D. Youness, E. M. Larbi and N. A. Rahim, “Sliding-mode speed control of PMSM with fuzzy-logic chattering minimization-design and implementation”, Information, 6(3), 432-442, 2015.
  • [9] V. Kumar, P. Gaur and A. P. Mittal, “Finite‐state model predictive control of NPC inverter using multi‐criteria fuzzy decision‐making”, International Transactions on Electrical Energy Systems, 25(5), 876-897, 2015.
  • [10] A. Medjghou, M. Ghanai and K. Chafaa, “Improved feedback linearization control based on PSO optimization of an extended Kalman filter”, Optimal Control Applications and Methods, 39(6), 1871-1886, 2018.
  • [11] L. Knypiński, L. Nowak and C. Jedryczka, “Optimization of the rotor geometry of the line-start permanent magnet synchronous motor by the use of particle swarm optimization”, COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 34, no. 3, pp. 882-892, 2015.
  • [12] A. M. Sharaf and A. A. El‐Gammal, “Multi‐objective PSO/GA optimization control strategies for energy efficient PMDC motor drives”, European Transactions on Electrical Power, 21(8), 2080-2097, 2011.
  • [13] W. M. Elawady, S. M. Lebda and A. M. Sarhan, “An optimized fuzzy continuous sliding mode controller combined with an adaptive proportional‐integral‐derivative control for uncertain systems”, Optimal Control Applications and Methods, 2020, https://doi.org/10.1002/oca.2580
  • [14] W. K. Wibowo and S. K. Jeong, “Genetic algorithm tuned PI controller on PMSM simplified vector control”, Journal of Central South University, 20(11), 3042-3048, 2013.
  • [15] L. Jolly, M. A. Jabbar and L. Qinghua, “Design optimization of permanent magnet motors using response surface methodology and genetic algorithms”, IEEE Transactions on Magnetics, 41(10), 3928-3930, 2005.
  • [16] J. M. Park, S. I. Kim, J. P. Hong and J. H. Lee, “Rotor design on torque ripple reduction for a synchronous reluctance motor with concentrated winding using response surface methodology”, IEEE Transactions on Magnetics, 42(10), 3479-3481, 2006.
  • [17] S. Saha, G. D. Choi and Y. H. Cho, “Optimal rotor shape design of LSPM with efficiency and power factor improvement using response surface methodology”, IEEE Transactions on Magnetics, 51(11), 1-4, 2015.
  • [18] E. Ilten and M. Demirtas, “Off-Line tuning of fractional order PIλ controller by using response surface method for induction motor speed control”, Journal of Control Engineering and Applied Informatics, Vol. 18, pp. 20-27, 2016.
  • [19] H. Calgan, E. Ilten and M. Demirtas, “Thyristor controlled reactor-based voltage and frequency regulation of a three-phase self-excited induction generator feeding unbalanced load”, International Transactions on Electrical Energy Systems, 2020, e12387. https://doi.org/10.1002/2050-7038.12387
  • [20] E. Ilten and M. Demirtas, “Fractional order super-twisting sliding mode observer for sensorless control of induction motor”, COMPEL-The international journal for computation and mathematics in electrical and electronic engineering, vol. 38, no. 2, pp. 878-892, 2019.
  • [21] S. Haghighatnia and T. Shandiz, “Design of nonlinear conformable fractional-order sliding mode controller for a class of nonlinear systems”, Journal of Control, Automation and Electrical Systems, 30(5), 622-631, 2019.
  • [22] Y. Luo, Y. Chen, H. S. Ahn and Y. Pi, “Fractional order robust control for cogging effect compensation in PMSM position servo systems: stability analysis and experiments”, Control Engineering Practice, 18(9), 1022-1036, 2010.
  • [23] K. Zong, S. Li and X. Lin, “The application of fractional-order PI control algorithm to the PMSM speed-adjusting system”, In International Conference on Intelligent Computing, pp. 660-669, Springer, Berlin, Heidelberg, 2007.
  • [24] B. Zhang, Y. Pi and Y. Luo, “Fractional order sliding-mode control based on parameters auto-tuning for velocity control of permanent magnet synchronous motor”, ISA transactions, 51(5), 649-656, 2012.
  • [25] W. Zheng and Y. Pi, “Study of the fractional order proportional integral controller for the permanent magnet synchronous motor based on the differential evolution algorithm”, ISA transactions, 63, 387-393, 2016.
  • [26] W. Qiao, X. Tang, S. Zheng, Y. Xie and B. Song, “Adaptive two-degree-of-freedom PI for speed control of permanent magnet synchronous motor based on fractional order GPC”, ISA transactions, 64, 303-313, 2016.
  • [27] A. Rajasekhar, A. Abraham and M. Pant, “A hybrid differential artificial bee colony algorithm based tuning of fractional order controller for permanent magnet synchronous motor drive”, International Journal of Machine Learning and Cybernetics, 5(3), 327-337, 2014.
  • [28] M. Tabatabaei, “Design of a fractional order adaptive controller for velocity control of a permanent magnet synchronous motor”, COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 34 no. 4, pp. 1191-1212, 2015.
  • [29] A. Karthikeyan, K. Rajagopal and D. Mathew, “Fractional order nonlinear variable speed and current regulation of a permanent magnet synchronous generator wind turbine system”, Alexandria engineering journal, 57(1), 159-167, 2018.
  • [30] A. M. Saraji and M. Ghanbari, “Fractional order PID controller for improvement of PMSM speed control in aerospace applications”, In AIP Conference Proceedings, vol. 1637, no. 1, pp. 959-967, American Institute of Physics, 2014.
  • [31] T. Abdeljawad, “On conformable fractional calculus”, Journal of computational and Applied Mathematics, 279, 57-66, 2015.
  • [32] H. Batarfi, J. Losada, J. J. Nieto and W. Shammakh, “Three-point boundary value problems for conformable fractional differential equations”, Journal of function spaces, vol 2015.
  • [33] H. Rezazadeh, H. Aminikhah and S. A. Refahi, “Stability analysis of conformable fractional systems”, Iranian Journal of Numerical Analysis and Optimization, 7(1), 13-32, 2017.
  • [34] Y. Wang, “Dynamic analysis and synchronization of conformable fractional-order chaotic systems”, The European Physical Journal Plus, 133(11), 481, 2018.
  • [35] B. K. Bose and B. K. Bose (Eds.), “Power electronics and variable frequency drives: technology and applications”, vol. 996, Piscataway, NJ: IEEE press, 1997.
  • [36] A. I. Khuri and S. Mukhopadhyay, “Response surface methodology” Wiley Interdisciplinary Reviews: Computational Statistics,vol 2, no 2, pp 128-149, 2010.
  • [37] S. Li, M. Zhou and X. Yu, "Design and Implementation of Terminal Sliding Mode Control Method for PMSM Speed Regulation System," IEEE Transactions on Industrial Informatics, vol.9, no 4, pp 1879-1891, 2013.
  • [38] Guchuan Zhu, L. -A. Dessaint, O. Akhrif and A. Kaddouri, "Speed tracking control of a permanent-magnet synchronous motor with state and load torque observer," IEEE Transactions on Industrial Electronics, vol.47, no. 2, pp.346-355, 2000.

Conformable Fractional Order PI Controller Design and Optimization for Permanent Magnet Synchronous Motor Speed Tracking System

Yıl 2021, Cilt: 9 Sayı: 3 - Ek Sayı, 130 - 144, 29.05.2021
https://doi.org/10.29130/dubited.756999

Öz

The use of permanent magnet synchronous motor (PMSM) is increasing rapidly to meet the need to increase efficiency in variable speed drive systems used in the industry, in recent years. This paper aims to improve the speed control performance of the PMSM based systems. To achieve this, a PMSM speed controller is designed based on the conformable fractional order proportional integral (CFOPI) method. CFOPI controller coefficients kp, ki and γ are optimized using response surface method (RSM). To validate the success of the proposed scheme, the CFOPI controller and the integer order PI (IOPI) controller are tested under the same simulation model and the results are compared. The proposed method grants robust performance with less computational load then the classical fractional order controllers for variable referenced PMSM speed tracking systems. The CFOPI controller can be applied easily for industrial variable speed drive systems which is using PMSM to improve the performance and stability of the systems.

Kaynakça

  • [1] J. -I. Itoh, N. Nomura and H. Ohsawa, "A comparison between V/f control and position-sensorless vector control for the permanent magnet synchronous motor," Proceedings of the Power Conversion Conference (Cat. No.02TH8579), 1310-1315,3, Osaka, Japan, 2002.
  • [2] P. D. C. Perera, F. Blaabjerg, J. K. Pedersen and P. Thogersen, "A sensorless, stable V/f control method for permanent-magnet synchronous motor drives," IEEE Transactions on Industry Applications, vol 39, no 3, pp 783-791, 2003.
  • [3] R. Khalil, M. Al Horani, A. Yousef and M. Sababheh, “A new definition of fractional derivative” Journal of Computational and Applied Mathematics, vol 264, pp 65-70, 2014.
  • [4] F. F. El-Sousy, “Intelligent optimal recurrent wavelet Elman neural network control system for permanent-magnet synchronous motor servo drive”, IEEE Transactions on Industrial Informatics, vol 9, no 4, pp 1986-2003, 2012.
  • [5] M. Demirtas, E. Ilten and H. Calgan, “Pareto-based multi-objective optimization for fractional order PIλ speed control of induction motor by using elman neural network”, Arabian Journal for Science and Engineering, 44(3), 2165-2175, 2019.
  • [6] F. Kheyrinataj and A. Nazemi, “Fractional Chebyshev functional link neural network‐optimization method for solving delay fractional optimal control problems with Atangana‐Baleanu derivative”, Optimal Control Applications and Methods, 41(3), 808-832, 2020.
  • [7] K. Y. Cheng and Y. Y. Tzou, “Fuzzy optimization techniques applied to the design of a digital PMSM servo drive”, IEEE Transactions on Power Electronics, 19(4), 1085-1099, 2004.
  • [8] F. Hicham, D. Yousfi, A. D. Youness, E. M. Larbi and N. A. Rahim, “Sliding-mode speed control of PMSM with fuzzy-logic chattering minimization-design and implementation”, Information, 6(3), 432-442, 2015.
  • [9] V. Kumar, P. Gaur and A. P. Mittal, “Finite‐state model predictive control of NPC inverter using multi‐criteria fuzzy decision‐making”, International Transactions on Electrical Energy Systems, 25(5), 876-897, 2015.
  • [10] A. Medjghou, M. Ghanai and K. Chafaa, “Improved feedback linearization control based on PSO optimization of an extended Kalman filter”, Optimal Control Applications and Methods, 39(6), 1871-1886, 2018.
  • [11] L. Knypiński, L. Nowak and C. Jedryczka, “Optimization of the rotor geometry of the line-start permanent magnet synchronous motor by the use of particle swarm optimization”, COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 34, no. 3, pp. 882-892, 2015.
  • [12] A. M. Sharaf and A. A. El‐Gammal, “Multi‐objective PSO/GA optimization control strategies for energy efficient PMDC motor drives”, European Transactions on Electrical Power, 21(8), 2080-2097, 2011.
  • [13] W. M. Elawady, S. M. Lebda and A. M. Sarhan, “An optimized fuzzy continuous sliding mode controller combined with an adaptive proportional‐integral‐derivative control for uncertain systems”, Optimal Control Applications and Methods, 2020, https://doi.org/10.1002/oca.2580
  • [14] W. K. Wibowo and S. K. Jeong, “Genetic algorithm tuned PI controller on PMSM simplified vector control”, Journal of Central South University, 20(11), 3042-3048, 2013.
  • [15] L. Jolly, M. A. Jabbar and L. Qinghua, “Design optimization of permanent magnet motors using response surface methodology and genetic algorithms”, IEEE Transactions on Magnetics, 41(10), 3928-3930, 2005.
  • [16] J. M. Park, S. I. Kim, J. P. Hong and J. H. Lee, “Rotor design on torque ripple reduction for a synchronous reluctance motor with concentrated winding using response surface methodology”, IEEE Transactions on Magnetics, 42(10), 3479-3481, 2006.
  • [17] S. Saha, G. D. Choi and Y. H. Cho, “Optimal rotor shape design of LSPM with efficiency and power factor improvement using response surface methodology”, IEEE Transactions on Magnetics, 51(11), 1-4, 2015.
  • [18] E. Ilten and M. Demirtas, “Off-Line tuning of fractional order PIλ controller by using response surface method for induction motor speed control”, Journal of Control Engineering and Applied Informatics, Vol. 18, pp. 20-27, 2016.
  • [19] H. Calgan, E. Ilten and M. Demirtas, “Thyristor controlled reactor-based voltage and frequency regulation of a three-phase self-excited induction generator feeding unbalanced load”, International Transactions on Electrical Energy Systems, 2020, e12387. https://doi.org/10.1002/2050-7038.12387
  • [20] E. Ilten and M. Demirtas, “Fractional order super-twisting sliding mode observer for sensorless control of induction motor”, COMPEL-The international journal for computation and mathematics in electrical and electronic engineering, vol. 38, no. 2, pp. 878-892, 2019.
  • [21] S. Haghighatnia and T. Shandiz, “Design of nonlinear conformable fractional-order sliding mode controller for a class of nonlinear systems”, Journal of Control, Automation and Electrical Systems, 30(5), 622-631, 2019.
  • [22] Y. Luo, Y. Chen, H. S. Ahn and Y. Pi, “Fractional order robust control for cogging effect compensation in PMSM position servo systems: stability analysis and experiments”, Control Engineering Practice, 18(9), 1022-1036, 2010.
  • [23] K. Zong, S. Li and X. Lin, “The application of fractional-order PI control algorithm to the PMSM speed-adjusting system”, In International Conference on Intelligent Computing, pp. 660-669, Springer, Berlin, Heidelberg, 2007.
  • [24] B. Zhang, Y. Pi and Y. Luo, “Fractional order sliding-mode control based on parameters auto-tuning for velocity control of permanent magnet synchronous motor”, ISA transactions, 51(5), 649-656, 2012.
  • [25] W. Zheng and Y. Pi, “Study of the fractional order proportional integral controller for the permanent magnet synchronous motor based on the differential evolution algorithm”, ISA transactions, 63, 387-393, 2016.
  • [26] W. Qiao, X. Tang, S. Zheng, Y. Xie and B. Song, “Adaptive two-degree-of-freedom PI for speed control of permanent magnet synchronous motor based on fractional order GPC”, ISA transactions, 64, 303-313, 2016.
  • [27] A. Rajasekhar, A. Abraham and M. Pant, “A hybrid differential artificial bee colony algorithm based tuning of fractional order controller for permanent magnet synchronous motor drive”, International Journal of Machine Learning and Cybernetics, 5(3), 327-337, 2014.
  • [28] M. Tabatabaei, “Design of a fractional order adaptive controller for velocity control of a permanent magnet synchronous motor”, COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 34 no. 4, pp. 1191-1212, 2015.
  • [29] A. Karthikeyan, K. Rajagopal and D. Mathew, “Fractional order nonlinear variable speed and current regulation of a permanent magnet synchronous generator wind turbine system”, Alexandria engineering journal, 57(1), 159-167, 2018.
  • [30] A. M. Saraji and M. Ghanbari, “Fractional order PID controller for improvement of PMSM speed control in aerospace applications”, In AIP Conference Proceedings, vol. 1637, no. 1, pp. 959-967, American Institute of Physics, 2014.
  • [31] T. Abdeljawad, “On conformable fractional calculus”, Journal of computational and Applied Mathematics, 279, 57-66, 2015.
  • [32] H. Batarfi, J. Losada, J. J. Nieto and W. Shammakh, “Three-point boundary value problems for conformable fractional differential equations”, Journal of function spaces, vol 2015.
  • [33] H. Rezazadeh, H. Aminikhah and S. A. Refahi, “Stability analysis of conformable fractional systems”, Iranian Journal of Numerical Analysis and Optimization, 7(1), 13-32, 2017.
  • [34] Y. Wang, “Dynamic analysis and synchronization of conformable fractional-order chaotic systems”, The European Physical Journal Plus, 133(11), 481, 2018.
  • [35] B. K. Bose and B. K. Bose (Eds.), “Power electronics and variable frequency drives: technology and applications”, vol. 996, Piscataway, NJ: IEEE press, 1997.
  • [36] A. I. Khuri and S. Mukhopadhyay, “Response surface methodology” Wiley Interdisciplinary Reviews: Computational Statistics,vol 2, no 2, pp 128-149, 2010.
  • [37] S. Li, M. Zhou and X. Yu, "Design and Implementation of Terminal Sliding Mode Control Method for PMSM Speed Regulation System," IEEE Transactions on Industrial Informatics, vol.9, no 4, pp 1879-1891, 2013.
  • [38] Guchuan Zhu, L. -A. Dessaint, O. Akhrif and A. Kaddouri, "Speed tracking control of a permanent-magnet synchronous motor with state and load torque observer," IEEE Transactions on Industrial Electronics, vol.47, no. 2, pp.346-355, 2000.
Toplam 38 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Erdem İlten 0000-0002-9608-2148

Yayımlanma Tarihi 29 Mayıs 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 9 Sayı: 3 - Ek Sayı

Kaynak Göster

APA İlten, E. (2021). Conformable Fractional Order PI Controller Design and Optimization for Permanent Magnet Synchronous Motor Speed Tracking System. Duzce University Journal of Science and Technology, 9(3), 130-144. https://doi.org/10.29130/dubited.756999
AMA İlten E. Conformable Fractional Order PI Controller Design and Optimization for Permanent Magnet Synchronous Motor Speed Tracking System. DÜBİTED. Mayıs 2021;9(3):130-144. doi:10.29130/dubited.756999
Chicago İlten, Erdem. “Conformable Fractional Order PI Controller Design and Optimization for Permanent Magnet Synchronous Motor Speed Tracking System”. Duzce University Journal of Science and Technology 9, sy. 3 (Mayıs 2021): 130-44. https://doi.org/10.29130/dubited.756999.
EndNote İlten E (01 Mayıs 2021) Conformable Fractional Order PI Controller Design and Optimization for Permanent Magnet Synchronous Motor Speed Tracking System. Duzce University Journal of Science and Technology 9 3 130–144.
IEEE E. İlten, “Conformable Fractional Order PI Controller Design and Optimization for Permanent Magnet Synchronous Motor Speed Tracking System”, DÜBİTED, c. 9, sy. 3, ss. 130–144, 2021, doi: 10.29130/dubited.756999.
ISNAD İlten, Erdem. “Conformable Fractional Order PI Controller Design and Optimization for Permanent Magnet Synchronous Motor Speed Tracking System”. Duzce University Journal of Science and Technology 9/3 (Mayıs 2021), 130-144. https://doi.org/10.29130/dubited.756999.
JAMA İlten E. Conformable Fractional Order PI Controller Design and Optimization for Permanent Magnet Synchronous Motor Speed Tracking System. DÜBİTED. 2021;9:130–144.
MLA İlten, Erdem. “Conformable Fractional Order PI Controller Design and Optimization for Permanent Magnet Synchronous Motor Speed Tracking System”. Duzce University Journal of Science and Technology, c. 9, sy. 3, 2021, ss. 130-44, doi:10.29130/dubited.756999.
Vancouver İlten E. Conformable Fractional Order PI Controller Design and Optimization for Permanent Magnet Synchronous Motor Speed Tracking System. DÜBİTED. 2021;9(3):130-44.