Düzensiz Ölçekli Sierpinski Üçgeni SG(2,3) Üzerindeki İçsel Metrik
Yıl 2021,
Cilt: 9 Sayı: 3 - Ek Sayı, 145 - 157, 29.05.2021
Fatma Diğdem Koparal
,
Yunus Özdemir
Öz
Bu çalışmada, fraktal geometrinin en önemli nesnelerinden biri olan Sierpinski üçgeninin bir genellemesi olarak düşünebileceğimiz düzensiz ölçekli bir Sierpinski üçgeni olan SG(2,3) üzerindeki içsel metriğin bir ifadesi kümenin noktalarının bu kümeye has kod temsilleri yardımıyla ifade edilmiştir.
Destekleyen Kurum
Eskişehir Teknik Üniversitesi
Teşekkür
Bu çalışma Eskişehir Teknik Üniversitesi Bilimsel Araştırma Projeleri tarafından desteklenmiştir (Proje no: 19ADP113).
Kaynakça
- [1] R.Hilfer ve A. Blumen, “Renormalisation on Sierpinski-type fractals,” Journal of Physics A: Mathematical and General, c. 17, s.10, ss. 537-545, 1984.
- [2] M.T. Barlow ve B.M. Hambly, “Transition density estimates for Brownian motion on scale irregular Sierpinski gaskets,” Annales de l'Institut Henri Poincare Probabilities et Statistiques, c. 33, s. 5, ss. 531-557, 1997.
- [3] B.M. Hambly, “Brownian motion on a random recursive Sierpinski gasket,” Ann. Probab., c. 25, ss. 1059-1102, 1997.
- [4] S.C. Chang ve L.C. Chen, “Number of connected spanning subgraphs on the Sierpinski gasket,” Discrete Mathematics and Theoretical Computer Science, c. 11, s. 1, ss. 55-77, 2019.
- [5] D. Burago, Y. Burago ve S. Ivanov, A Course in Metric Geometry, USA: AMS, 2001.
- [6] M. Saltan, Y. Özdemir ve B. Demir, “An explicit formula of the intrinsic metric on the Sierpinski gasket via code representation,” Turk. J. Math., c. 42, ss. 716-725, 2018.
- [7] M. Saltan, Y. Özdemir ve B. Demir, “Geodesics of the Sierpinski gasket,” Fractals, c. 26, s. 3, 1850024, 2018.
- [8] Y. Özdemir, “The intrinsic metric and geodesics on the Sierpinski gasket SG(3),” Turk. J. Math., c. 43, ss. 2741-2754, 2019.
- [9] Y. Özdemir, M. Saltan ve B. Demir, “The Intrinsic Metric on the Box Fractal,” Bull. Iran. Math. Soc., c. 45, ss. 1269-1281, 2019.
- [10] J. E. Hutchinson, “Fractals and Self-similarity,” Indiana Univ. Math. J., c. 30, ss.713–747, 1981.
- [11] G. Edgar, Measure, Topology and Fractal Geometry, New York: Springer, 2008.
- [12] K.J. Falconer, “Sub-self-similar sets,” Transactions of the American Mathematical Society,
c. 347, s. 8, ss. 3121-3129, 1995.
- [13] D.W. Spear, “Measures and self-similarity.” Adv. in Math., c. 91, s. 2, ss. 143-157, 1992.
- [14] M. Barnsley, Fractals Everywhere, San Diego: Academic Press, 1988.
- [15] W. Sierpinski, “Sur une courbe dont tout point est un point de ramification,” C.R.Acad.Sci.,
c. 160, ss. 302-305, 1915.
- [16] J. Kigami, Analysis on Fractals, Cambridge: Cambridge University Press, 2001.
- [17] J. Gu, Q. Ye ve L. Xi, “Geodesics of higher-dimensional Sierpinski gasket,” Fractals, c. 27, s. 4, 1950049, 2019.
The Intrinsic Metric on the Scale Irregular Sierpinski Triangle SG(2,3)
Yıl 2021,
Cilt: 9 Sayı: 3 - Ek Sayı, 145 - 157, 29.05.2021
Fatma Diğdem Koparal
,
Yunus Özdemir
Kaynakça
- [1] R.Hilfer ve A. Blumen, “Renormalisation on Sierpinski-type fractals,” Journal of Physics A: Mathematical and General, c. 17, s.10, ss. 537-545, 1984.
- [2] M.T. Barlow ve B.M. Hambly, “Transition density estimates for Brownian motion on scale irregular Sierpinski gaskets,” Annales de l'Institut Henri Poincare Probabilities et Statistiques, c. 33, s. 5, ss. 531-557, 1997.
- [3] B.M. Hambly, “Brownian motion on a random recursive Sierpinski gasket,” Ann. Probab., c. 25, ss. 1059-1102, 1997.
- [4] S.C. Chang ve L.C. Chen, “Number of connected spanning subgraphs on the Sierpinski gasket,” Discrete Mathematics and Theoretical Computer Science, c. 11, s. 1, ss. 55-77, 2019.
- [5] D. Burago, Y. Burago ve S. Ivanov, A Course in Metric Geometry, USA: AMS, 2001.
- [6] M. Saltan, Y. Özdemir ve B. Demir, “An explicit formula of the intrinsic metric on the Sierpinski gasket via code representation,” Turk. J. Math., c. 42, ss. 716-725, 2018.
- [7] M. Saltan, Y. Özdemir ve B. Demir, “Geodesics of the Sierpinski gasket,” Fractals, c. 26, s. 3, 1850024, 2018.
- [8] Y. Özdemir, “The intrinsic metric and geodesics on the Sierpinski gasket SG(3),” Turk. J. Math., c. 43, ss. 2741-2754, 2019.
- [9] Y. Özdemir, M. Saltan ve B. Demir, “The Intrinsic Metric on the Box Fractal,” Bull. Iran. Math. Soc., c. 45, ss. 1269-1281, 2019.
- [10] J. E. Hutchinson, “Fractals and Self-similarity,” Indiana Univ. Math. J., c. 30, ss.713–747, 1981.
- [11] G. Edgar, Measure, Topology and Fractal Geometry, New York: Springer, 2008.
- [12] K.J. Falconer, “Sub-self-similar sets,” Transactions of the American Mathematical Society,
c. 347, s. 8, ss. 3121-3129, 1995.
- [13] D.W. Spear, “Measures and self-similarity.” Adv. in Math., c. 91, s. 2, ss. 143-157, 1992.
- [14] M. Barnsley, Fractals Everywhere, San Diego: Academic Press, 1988.
- [15] W. Sierpinski, “Sur une courbe dont tout point est un point de ramification,” C.R.Acad.Sci.,
c. 160, ss. 302-305, 1915.
- [16] J. Kigami, Analysis on Fractals, Cambridge: Cambridge University Press, 2001.
- [17] J. Gu, Q. Ye ve L. Xi, “Geodesics of higher-dimensional Sierpinski gasket,” Fractals, c. 27, s. 4, 1950049, 2019.