Araştırma Makalesi
BibTex RIS Kaynak Göster

Prediction of Flexural Properties of Wood Material Reinforced with Various FRP Fabrics by Artificial Neural Networks

Yıl 2021, Cilt: 9 Sayı: 6 - ICAIAME 2021, 188 - 194, 31.12.2021
https://doi.org/10.29130/dubited.1015572

Öz

Recently, fiber reinforced polymer (FRP) applications have started to be used in the reinforcement of wooden structures, such as in the reinforcement of steel and reinforced concrete structures. It is necessary to strengthen the wooden structures for reasons such as removing the damages caused by external factors and earthquakes in time, increasing the load-bearing capacity of the structure by restoration, preventing early fatigue and breakages that may occur as a result of mistakes made in the design. The necessity to improve the repair and strengthening methods of the structures damaged as a result of the earthquake over time arises. In this study, the maximum load, displacement, flexural strength and modulus of elasticity of the wood material of Iroko and Ash tree species reinforced with 4 different FRP fabrics, namely carbon, glass, aramid and basalt, were determined by bending test. As a result of the experimental study, the maximum load, displacement, flexure strength and elasticity modulus values of the reinforced samples were estimated by artificial neural network (ANN). As a result, it was determined that the flexural properties of a wood material strengthened with FRP by using ANN can be predicted.

Destekleyen Kurum

SDU BAP

Proje Numarası

FDK-2019-6950

Teşekkür

This study has been prepared within the scope of the thematic area of “Sustainable Building Materials and Technologies” with SDÜ BAP project with FDK-2019-6950 project code and YÖK 100/2000 doctoral program. The authors thank the SDU BAP unit, YÖK and YÖK100/2000 program staff.

Kaynakça

  • [1] I. Usta, ‘‘The current state of the wood material impregnation industry in Turkey and suggestions for its development,’’ M.S. thesis, Dep. Woodworking Industrial Engineering, Hacettepe University, Ankara, Turkey, 1993.
  • [2] B. Uysal, ‘‘Wood material lecture notes,’’ Karabuk University, Faculty of Technical Education, Karabük, Turkey, 2005. [3] J. E. Winandy, ‘‘Wood properties,’’ Encyclopedia of Agricultural Science, vol. 4, pp. 549-561, 1994.
  • [4] P. O. Kettunen, ‘‘Wood: Structure and properties,’’ Uetikon-Zuerich: Trans Tech Publication, 2006.
  • [5] S. Kilincarslan and Y. Şimşek Türker ‘’Experimental investigation of the rotational behaviour of glulam column-beam joints reinforced with fiber reinforced polymer composites,’’ Composite Structures, vol. 262, 2021.
  • [6] H. T. Sahin, M. B. Arslan, S. Korkut and C. Sahin. ‘’Colour Changes of Heat‐Treated Woods of Red‐Bud Maple, European Hophornbeam And Oak’’. Color Research & Application, vol. 36, no. 6, 462-466, 2011.
  • [7] C. K. Sahin and B. Onay. ‘’Alternatıve wood wpecies for playgrounds wood from fruit trees’’. Wood Research, vol. 65, no. 1, pp. 149- 160, 2020.
  • [8] C. Sahin, M. Topay and A.A. Var. ‘’A study on some wood species for landscape applications: surface color, hardness and roughness changes at outdoor conditions’’. Wood Research, vol. 65, no. 3, pp. 395-404, 2020.
  • [9] R. Günay, Traditional Wooden Structures Problems and Solutions, Istanbul: Birsen Publishing, pp. 43-64, 2002.
  • [10] B. R. Öztürk, ‘‘Mechanical properties of laminated wooden beams from Turkish yellow pine,’’ Journal of Istanbul Technical University, vol. 5, no. 2, pp. 25-36, 2006.
  • [11] S. Kilincarslan and Y. S. Turker, ‘‘Investigation of wooden beam behaviors reinforced with fiber rein-forced polymers,’’ Organic Polymer Material Research, vol. 2, no. 1, pp. 1-7, 2020.
  • [12] Y. Şahin, Introduction to Composite Materials, Ankara: Gazi Bookstore, pp. 2-33, 2000.
  • [13] Ş. Kilincarslan, Y. Şimşek Türker and M. İnce, ‘‘Prediction of heat-treated spruce wood surface roughness with artificial neural network and random forest algorithm,’’ The International Conference on Artificial Intelligence and Applied Mathematics in Engineering, Cham, 2020.
  • [14] S. Bolat and Ö. Kalenderli, “Electrode shape optimization with artificial neural network using levenberg-marquardt algorithm,” International XII. Turkish Symposium on Artificial Intelligence and Neural Networks – TAINN, 2003, pp. 256-261.
  • [15] S. Subaşı, “Prediction of mechanical properties of cement containing class C fly ash by using artificial neural network and regression technique,” Scientific Research and Essay, vol. 4, no. 4, pp. 289-297, 2009. [16] S. S. Dorvlo, Jervase, J.A. and Al-Lawati, A., “Solar radiation estimation using artificial neural network,” Applied Energy, vol. 71, pp. 307–319, 2002. [17] D. L. Shrestha and D. P. Solomatine, ‘‘Machine learning approaches for estimation of prediction ınterval for the model output,’’ Neural Networks, vol. 19, no. 2, pp. 225-235, 2006.
  • [18] T. Sasakawa, J. Hu and K. Hirasawa,‘‘A brainlike learning system with supervised, unsupervised, and reinforcement learning,’’ Electrical Engineering in Japan, vol. 162, no. 1, pp. 32-39, 2008.
  • [19] S. Ghosh-Dastidar and H. Adeli, ‘‘A new supervised learning algorithm for multiple spiking neural networks with application in epilepsy and seizure detection,’’ Neural Networks, vol. 22, no. 10, pp. 1419-1431, 2009.
  • [20] T. D. Sanger, ‘‘Optimal unsupervised learning in a single-layer linear feedforward neural network,’’ Neural Networks, vol. 2, no. 6, pp. 459-473, 1989.
  • [21] S. Singh, T. Jaakkola, M. L. Littman and C. Szepesvári, ‘‘Convergence results for single step on policy reinforcement learning algorithms,’’ Machine Learning, vol. 38, no. 3, pp. 287-308, 2000.
  • [22] V. Rodriguez-Galiano, M. Sanchez-Castillo, Chica-Olmo, M. and M. J. O. G. R. Chica-Rivas, ‘‘Machine learning predictive models for mineral prospectivity: an evaluation of neural networks, random forest, regression trees and support vector machines,’’ Ore Geology Reviews, vol. 71, pp. 804-818, 2015.
  • [23] M. Van Gerven and S. Bohte, ‘‘Artificial neural networks as models of neural ınformation processing,’’ Frontiers in Computational Neuroscience, no.11, pp.114, 2017.
  • [24] G. Zhang, B. E. Patuwo, M. Y. Hu, ‘‘Forecasting with artificial neural networks: the state of the art,’’ International Journal of Forecasting, vol. 14, no. 1, pp. 35-62, 1998.
  • [25] A. Recchia, ‘‘R-Squared measures for two-level hierarchical linear models using SAS,’’ Journal of Statistical Software, vol. 32, no. 2, pp. 1-9, 2010.

Çeşitli FRP Kumaşlarla Güçlendirilmiş Ahşap Malzemenin Eğilme Özelliklerinin Yapay Sinir Ağları ile Tahmini

Yıl 2021, Cilt: 9 Sayı: 6 - ICAIAME 2021, 188 - 194, 31.12.2021
https://doi.org/10.29130/dubited.1015572

Öz

Son zamanlarda çelik ve betonarme yapıların güçlendirilmesinde olduğu gibi ahşap yapıların güçlendirilmesinde de fiber takviyeli polimer (FRP) uygulamaları kullanılmaya başlanmıştır. Dış etkenlerin ve depremin neden olduğu hasarların zamanla giderilmesi, restorasyon ile yapının taşıma kapasitesinin artırılması, erken yorulma ve yapılan hatalar sonucu oluşabilecek kırılmaların önlenmesi gibi nedenlerle ahşap yapıların güçlendirilmesi gerekmektedir. Zamanla deprem sonucu hasar gören yapıların onarım ve güçlendirme yöntemlerinin iyileştirilmesi gerekliliği ortaya çıkmaktadır. Bu çalışmada, karbon, cam, aramid ve bazalt olmak üzere 4 farklı FRP kumaş ile güçlendirilmiş İroko ve Dişbudak ağaç türlerinin maksimum yükü, yer değiştirmesi, eğilme dayanımı ve elastisite modülü eğilme testi ile belirlenmiştir. Deneysel çalışma sonucunda, güçlendirilmiş numunelerin maksimum yük, yer değiştirme, eğilme dayanımı ve elastisite modülü değerleri yapay sinir ağları (YSA) ile tahmin edilmiştir. Sonuç olarak, YSA kullanılarak FRP ile güçlendirilmiş bir ahşap malzemenin eğilme özelliklerinin tahmin edilebileceği belirlenmiştir.

Proje Numarası

FDK-2019-6950

Kaynakça

  • [1] I. Usta, ‘‘The current state of the wood material impregnation industry in Turkey and suggestions for its development,’’ M.S. thesis, Dep. Woodworking Industrial Engineering, Hacettepe University, Ankara, Turkey, 1993.
  • [2] B. Uysal, ‘‘Wood material lecture notes,’’ Karabuk University, Faculty of Technical Education, Karabük, Turkey, 2005. [3] J. E. Winandy, ‘‘Wood properties,’’ Encyclopedia of Agricultural Science, vol. 4, pp. 549-561, 1994.
  • [4] P. O. Kettunen, ‘‘Wood: Structure and properties,’’ Uetikon-Zuerich: Trans Tech Publication, 2006.
  • [5] S. Kilincarslan and Y. Şimşek Türker ‘’Experimental investigation of the rotational behaviour of glulam column-beam joints reinforced with fiber reinforced polymer composites,’’ Composite Structures, vol. 262, 2021.
  • [6] H. T. Sahin, M. B. Arslan, S. Korkut and C. Sahin. ‘’Colour Changes of Heat‐Treated Woods of Red‐Bud Maple, European Hophornbeam And Oak’’. Color Research & Application, vol. 36, no. 6, 462-466, 2011.
  • [7] C. K. Sahin and B. Onay. ‘’Alternatıve wood wpecies for playgrounds wood from fruit trees’’. Wood Research, vol. 65, no. 1, pp. 149- 160, 2020.
  • [8] C. Sahin, M. Topay and A.A. Var. ‘’A study on some wood species for landscape applications: surface color, hardness and roughness changes at outdoor conditions’’. Wood Research, vol. 65, no. 3, pp. 395-404, 2020.
  • [9] R. Günay, Traditional Wooden Structures Problems and Solutions, Istanbul: Birsen Publishing, pp. 43-64, 2002.
  • [10] B. R. Öztürk, ‘‘Mechanical properties of laminated wooden beams from Turkish yellow pine,’’ Journal of Istanbul Technical University, vol. 5, no. 2, pp. 25-36, 2006.
  • [11] S. Kilincarslan and Y. S. Turker, ‘‘Investigation of wooden beam behaviors reinforced with fiber rein-forced polymers,’’ Organic Polymer Material Research, vol. 2, no. 1, pp. 1-7, 2020.
  • [12] Y. Şahin, Introduction to Composite Materials, Ankara: Gazi Bookstore, pp. 2-33, 2000.
  • [13] Ş. Kilincarslan, Y. Şimşek Türker and M. İnce, ‘‘Prediction of heat-treated spruce wood surface roughness with artificial neural network and random forest algorithm,’’ The International Conference on Artificial Intelligence and Applied Mathematics in Engineering, Cham, 2020.
  • [14] S. Bolat and Ö. Kalenderli, “Electrode shape optimization with artificial neural network using levenberg-marquardt algorithm,” International XII. Turkish Symposium on Artificial Intelligence and Neural Networks – TAINN, 2003, pp. 256-261.
  • [15] S. Subaşı, “Prediction of mechanical properties of cement containing class C fly ash by using artificial neural network and regression technique,” Scientific Research and Essay, vol. 4, no. 4, pp. 289-297, 2009. [16] S. S. Dorvlo, Jervase, J.A. and Al-Lawati, A., “Solar radiation estimation using artificial neural network,” Applied Energy, vol. 71, pp. 307–319, 2002. [17] D. L. Shrestha and D. P. Solomatine, ‘‘Machine learning approaches for estimation of prediction ınterval for the model output,’’ Neural Networks, vol. 19, no. 2, pp. 225-235, 2006.
  • [18] T. Sasakawa, J. Hu and K. Hirasawa,‘‘A brainlike learning system with supervised, unsupervised, and reinforcement learning,’’ Electrical Engineering in Japan, vol. 162, no. 1, pp. 32-39, 2008.
  • [19] S. Ghosh-Dastidar and H. Adeli, ‘‘A new supervised learning algorithm for multiple spiking neural networks with application in epilepsy and seizure detection,’’ Neural Networks, vol. 22, no. 10, pp. 1419-1431, 2009.
  • [20] T. D. Sanger, ‘‘Optimal unsupervised learning in a single-layer linear feedforward neural network,’’ Neural Networks, vol. 2, no. 6, pp. 459-473, 1989.
  • [21] S. Singh, T. Jaakkola, M. L. Littman and C. Szepesvári, ‘‘Convergence results for single step on policy reinforcement learning algorithms,’’ Machine Learning, vol. 38, no. 3, pp. 287-308, 2000.
  • [22] V. Rodriguez-Galiano, M. Sanchez-Castillo, Chica-Olmo, M. and M. J. O. G. R. Chica-Rivas, ‘‘Machine learning predictive models for mineral prospectivity: an evaluation of neural networks, random forest, regression trees and support vector machines,’’ Ore Geology Reviews, vol. 71, pp. 804-818, 2015.
  • [23] M. Van Gerven and S. Bohte, ‘‘Artificial neural networks as models of neural ınformation processing,’’ Frontiers in Computational Neuroscience, no.11, pp.114, 2017.
  • [24] G. Zhang, B. E. Patuwo, M. Y. Hu, ‘‘Forecasting with artificial neural networks: the state of the art,’’ International Journal of Forecasting, vol. 14, no. 1, pp. 35-62, 1998.
  • [25] A. Recchia, ‘‘R-Squared measures for two-level hierarchical linear models using SAS,’’ Journal of Statistical Software, vol. 32, no. 2, pp. 1-9, 2010.
Toplam 22 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Şemsettin Kılınçarslan 0000-0001-8253-9357

Yasemin Türker 0000-0002-3080-0215

Murat İnce 0000-0001-5566-5008

Proje Numarası FDK-2019-6950
Yayımlanma Tarihi 31 Aralık 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 9 Sayı: 6 - ICAIAME 2021

Kaynak Göster

APA Kılınçarslan, Ş., Türker, Y., & İnce, M. (2021). Prediction of Flexural Properties of Wood Material Reinforced with Various FRP Fabrics by Artificial Neural Networks. Duzce University Journal of Science and Technology, 9(6), 188-194. https://doi.org/10.29130/dubited.1015572
AMA Kılınçarslan Ş, Türker Y, İnce M. Prediction of Flexural Properties of Wood Material Reinforced with Various FRP Fabrics by Artificial Neural Networks. DÜBİTED. Aralık 2021;9(6):188-194. doi:10.29130/dubited.1015572
Chicago Kılınçarslan, Şemsettin, Yasemin Türker, ve Murat İnce. “Prediction of Flexural Properties of Wood Material Reinforced With Various FRP Fabrics by Artificial Neural Networks”. Duzce University Journal of Science and Technology 9, sy. 6 (Aralık 2021): 188-94. https://doi.org/10.29130/dubited.1015572.
EndNote Kılınçarslan Ş, Türker Y, İnce M (01 Aralık 2021) Prediction of Flexural Properties of Wood Material Reinforced with Various FRP Fabrics by Artificial Neural Networks. Duzce University Journal of Science and Technology 9 6 188–194.
IEEE Ş. Kılınçarslan, Y. Türker, ve M. İnce, “Prediction of Flexural Properties of Wood Material Reinforced with Various FRP Fabrics by Artificial Neural Networks”, DÜBİTED, c. 9, sy. 6, ss. 188–194, 2021, doi: 10.29130/dubited.1015572.
ISNAD Kılınçarslan, Şemsettin vd. “Prediction of Flexural Properties of Wood Material Reinforced With Various FRP Fabrics by Artificial Neural Networks”. Duzce University Journal of Science and Technology 9/6 (Aralık 2021), 188-194. https://doi.org/10.29130/dubited.1015572.
JAMA Kılınçarslan Ş, Türker Y, İnce M. Prediction of Flexural Properties of Wood Material Reinforced with Various FRP Fabrics by Artificial Neural Networks. DÜBİTED. 2021;9:188–194.
MLA Kılınçarslan, Şemsettin vd. “Prediction of Flexural Properties of Wood Material Reinforced With Various FRP Fabrics by Artificial Neural Networks”. Duzce University Journal of Science and Technology, c. 9, sy. 6, 2021, ss. 188-94, doi:10.29130/dubited.1015572.
Vancouver Kılınçarslan Ş, Türker Y, İnce M. Prediction of Flexural Properties of Wood Material Reinforced with Various FRP Fabrics by Artificial Neural Networks. DÜBİTED. 2021;9(6):188-94.