Preparation, Characterization and İnvestigation of Swelling Behavior of HEMA-Based Amphiphilic Semi-IPN Cryogels Containing Polymeric Linoleic Acid
Yıl 2022,
Cilt: 10 Sayı: 1, 154 - 169, 31.01.2022
Cansu Meltem Gürel
Koray Şarkaya
,
Abdulkadir Allı
Öz
In this study, it was aimed to synthesize and characterize a new polymeric cryogel system to be formed with polymeric linoleic acid (PLina), a vegetable oil-based polymeric fatty acid, and the widely preferred 2-hydroxyethyl methacrylate (HEMA) monomer. cryogels. For this purpose, firstly, autoxidation and hydroxylation reactions were carried out for polymeric lineloic acid, respectively. Hydroxylated polymeric lineloic acid (PLina-OH) and HEMA monomer were subjected to a cryogenic gelation reaction in the presence of N,N′-methylene bisacrylamide (MBAA) as crosslinking agent. The obtained new cryogel was characterized by FTIR, SEM, BET, TGA analyses. The swelling behavior of the synthesized PLinaOH-HEMA cryogels in water was concluded with kinetic studies. In the other hands, some of polar and non-polar other solvents was used for investigation of all cryogels to see their potentials for solvent uptake.
Destekleyen Kurum
Düzce University Scientific Research Projects
Proje Numarası
2019.05.03.1024
Teşekkür
This study was supported by Düzce University Scientific Research Projects (Grant/Award Number: 2019.05.03.1024).
Kaynakça
- [1] L. Z. Rogovina, V. G. Vasil’ev, and E. E. Braudo, “Definition of the concept of polymer gel,”
Polym. Sci. - Ser. C, vol. 50, no. 1, pp. 85–92, 2008.
- [2] J. Jagur-Grodzinski, “Polymeric gels and hydrogels for biomedical and pharmaceutical
applications,” Polymers for Advanced Technologies, vol. 21, no. 1. pp. 27–47, 2010.
- [3] N. Sahiner, “Soft and flexible hydrogel templates of different sizes and various functionalities
for metal nanoparticle preparation and their use in catalysis,” Progress in Polymer Science, vol. 38,
no. 9. Pergamon, pp. 1329–1356, Sep. 01, 2013.
- [4] F. Horkay and J. F. Douglas, “Polymer Gels: Basics, Challenges, and Perspectives,” 2018.
Accessed: Jun. 22, 2021. [Online]. Available: https://pubs.acs.org/sharingguidelines.
- [5] J. Kopeček, “Polymer chemistry: Swell gels,” Nature, vol. 417, no. 6887. Nature Publishing
Group, pp. 388–391, May 23, 2002.
- [6] V. I. Lozinsky, “Cryogels on the basis of natural and synthetic polymers: Preparation,
properties and application,” Usp. Khim., vol. 71, no. 6, pp. 579–584, 2002.
- [7] K. Ito, “Novel cross-linking concept of polymer network: Synthesis, structure, and properties
of slide-ring gels with freely movable junctions,” Polym. J., vol. 39, no. 6, pp. 489–499, 2007.
- [8] V. I. Lozinsky and O. Okay, “Basic Principles of Cryotropic Gelation,” Adv. Polym. Sci., vol.
263, pp. 49–101, 2014.
- [9] F. M. Plleva, I. Y. Galaev, and B. Mattiasson, “Macroporous gels prepared at subzero
temperatures as novel materials for chromatography of particulate-containing fluids and cell culture
applications,” Journal of Separation Science, vol. 30, no. 11. pp. 1657–1671, 2007.
- [10] M. Zhai, F. Ma, J. Li, B. Wan, and N. Yu, “Preparation and properties of cryogel based on
poly(hydroxypropyl methacrylate),” J. Biomater. Sci. Polym. Ed., vol. 29, no. 12, pp. 1401–1425,
2018.
- [11] F. Ak, Z. Oztoprak, I. Karakutuk, and O. Okay, “Macroporous Silk Fibroin Cryogels,”
Biomacromolecules, vol. 14, no. 3, pp. 719–727, 2013.
- [12] S. A. Bencherif, R. W. Sands, O. A. Ali, W. A. Ali, S. A. Lewin, T. M. Braschler, T. Shih, C.
S. Verbeke, D. Bhatta, G. Dranoff, D. J. Mooney, “Injectable cryogel-based whole-cell cancer
vaccines,” Nat. Commun., vol. 6, no. 1, pp. 1–13, 2015.
- [13] T. Santos, A.Brito, R.Boto, P.Sousa, P.Almeida, C.Cruz and C.Tomaz, “Influenza DNA
vaccine purification using pHEMA cryogel support,” Sep.Purif. Technol., vol. 206, pp. 192–198,
2018.
- [14] T. D. Luong, M. Zoughaib, R. Garifullin, S. Kuznetsova, M. O. Guler, and T. I. Abdullin, “In
Situ functionalization of Poly(hydroxyethyl methacrylate) Cryogels with Oligopeptides via β
Cyclodextrin-Adamantane Complexation for Studying Cell-Instructive Peptide Environment,” ACS
Appl. Bio Mater., vol. 3, no. 2, pp. 1116–1128, 2020.
- [15] A. Cecilia, A. Baecker, E. Hamann, A. Rack, T. van de Kamp, F.J. Gruhl, R.Hofmann,
J.Moosmann, S. Hahn, J. Kashef, S. Bauer, T. Farago, L. Helfen, and T. Baumbach,, “Optimizing
structural and mechanical properties of cryogel scaffolds for use in prostate cancer cell culturing,”
Mater. Sci. Eng. C, vol. 71, pp. 465–472, 2017.
- [16] T. Kangkamano, A. Numnuam, W. Limbut, P. Kanatharana, and P. Thavarungkul, “Chitosan
cryogel with embedded gold nanoparticles decorated multiwalled carbon nanotubes modified electrode
for highly sensitive flow based non-enzymatic glucose sensor,” Sensors Actuators, B Chem., vol. 246,
pp. 854–863, 2017.
- [17] Z. Haider, A. Haleem, R. u S. Ahmad, U. Farooq, L. Shi, U. P. Clever, K. Memon, A. Fareed,
I. Khan, M. K. Mbogba, S. M. Chapal Hossain, F. Farooq, W. Ali, M. Abid, A. Qadir, W. He, J. Luo,
and G. Zhao, “Highly porous polymer cryogel based tribopositive material for high performance
triboelectric nanogenerators,” Nano Energy, vol. 68, p. 104294, 2020.
- [18] M. D. Stanescu, S. Gavrilas, R. Ludwig, D. Haltrich, and V. I. Lozinsky, “Preparation of
immobilized Trametes pubescens laccase on a cryogel-type polymeric carrier and application of the
biocatalyst to apple juice phenolic compounds oxidation,” Eur. Food Res. Technol., vol. 234, no. 4,
pp. 655–662, 2012.
- [19] M. Çadırcı, K. Şarkaya, and A. Allı, “Dielectric properties of CdSe quantum dots-loaded
cryogel for potential future electronic applications,” Mater. Sci. Semicond. Process., vol. 119, p.
105269, 2020.
- [20] T. Shimizu, M. Masuda, and H. Minamikawa, “Supramolecular nanotube architectures based
on amphiphilic molecules,” Chemical Reviews, vol. 105, no. 4. American Chemical Society , pp.
1401–1443, 2005.
- [21] C. XiaoMing, D. Wei, and Z. XianRen, “SCIENCE CHINA Chemistry Self-assembly of
amphiphilic molecules: A review on the recent computer simulation results,” vol. 53, no. 9, pp. 1853
1861, 2010.
[22] G. Galli and E. Martinelli, “Amphiphilic Polymer Platforms: Surface Engineering of Films for
Marine Antibiofouling,” Macromol. Rapid Commun., vol. 38, no. 8, p. 1600704, 2017.
- [23] C. S. Patrickios and T. K. Georgiou, “Covalent amphiphilic polymer networks,” Current
Opinion in Colloid and Interface Science, vol. 8, no. 1. Elsevier BV, pp. 76–85, Mar. 01, 2003.
- [24] S. Zarzhitsky, H. Edri, Z. Azoulay, I. Cohen, Y. Ventura, A. Gitelman, and H. Rapaport, “The
effect of pH and calcium ions on the stability of amphiphilic and anionic β-sheet peptide hydrogels,”
Biopolymers, vol. 100, no. 6, pp. 760–772, 2013.
- [25] X. R. Zhou, R. Ge, and S. Z. Luo, “Self-assembly of pH and calcium dual-responsive peptide
amphiphilic hydrogel,” J. Pept. Sci., vol. 19, no. 12, pp. 737–744, 2013.
- [26] W. Ha, J. Yu, X. Y. Song, J. Chen, and Y. P. Shi, “Tunable temperature-responsive
supramolecular hydrogels formed by prodrugs as a codelivery system,” ACS Appl. Mater. Interfaces,
vol. 6, no. 13, pp. 10623–10630, 2014.
- [27] M. H. Hsiao, M.Larsson, A. Larsson, H. Evenbratt, Y. Y. Chen, Y. Y. Chen, and D. M. Liu,
“Design and characterization of a novel amphiphilic chitosan nanocapsule based thermo-gelling biogel
with sustained in vivo release of the hydrophilic anti-epilepsy drug ethosuximide,” J. Control.
Release, vol. 161, no. 3, pp. 942–948, 2012.
- [28] W. C. Huang, S. Y. Chen, and D. M. Liu, “An amphiphilic silicone-modified polysaccharide
molecular hybrid with in situ forming of hierarchical superporous architecture upon swelling,” Soft
Matter, vol. 8, no. 42, pp. 10868–10876, 2012.
- [29] S. Song, L. Feng, A. Song, and J. Hao, “Room-temperature super hydrogel as dye adsorption
agent,” J. Phys. Chem. B, vol. 116, no. 42, pp. 12850–12856, 2012.
- [30] S. Das, P. Pandey, S. Mohanty, and S. K. Nayak, “Insight on Castor Oil Based Polyurethane
and Nanocomposites: Recent Trends and Development,” Polymer - Plastics Technology and
Engineering, vol. 56, no. 14. Taylor and Francis Inc., pp. 1556–1585, Sep. 22, 2017.
[31] P. Anastas and N. Eghbali, “Green Chemistry: Principles and Practice,” Chem. Soc. Rev., vol.
39, no. 1, pp. 301–312, 2010.
- [32] M. A. Sawpan, “Polyurethanes from vegetable oils and applications: a review,” J. Polym. Res.
2018 258, vol. 25, no. 8, pp. 1–15, 2018.
- [33] H.-M. Kim, H.-R. Kim, C. T. Hou, Beom, and S. Kim, “Biodegradable Photo-Crosslinked
Thin Polymer Networks Based on Vegetable Oil Hydroxy Fatty Acids,” doi: 10.1007/s11746-010
1634-6.
- [34] R. L. Shogren, Z. Petrovic, Z. Liu, and S. Z. Erhan, “Biodegradation behavior of some
vegetable oil-based polymers,” J. Polym. Environ., vol. 12, no. 3, pp. 173–178, 2004.
- [35] B. Hazer, “Chemical Modification of Synthetic and Biosynthetic Polyesters,” in Biopolymers
Online, Wiley, 2002.
- [36] P. S. Sathiskumar and G. Madras, “Synthesis, characterization, degradation of biodegradable
castor oil based polyesters,” Polym. Degrad. Stab., vol. 96, no. 9, pp. 1695–1704, 2011.
- [37] S. Miao, P. Wang, Z. Su, and S. Zhang, “Vegetable-oil-based polymers as future polymeric
biomaterials,” Acta Biomaterialia, vol. 10, no. 4. Elsevier BV, pp. 1692–1704, Apr. 01, 2014.
- [38] G. Acik, M. Kamaci, C. Altinkok, H. R. F. Karabulut, and M. A. Tasdelen, “Synthesis and
properties of soybean oil-based biodegradable polyurethane films,” Prog. Org. Coatings, vol. 123, pp.
261–266, 2018.
- [39] B. Das, U. Konwar, M. Mandal, and N. Karak, “Sunflower oil based biodegradable
hyperbranched polyurethane as a thin film material,” Ind. Crops Prod., vol. 44, pp. 396–404, 2013.
- [40] B. Çakmakli, B. Hazer, T. Erdoğan, and A. G. Mutlu, “DNA adsorption and dynamic
mechanical analysis of polymeric oil/oil acid copolymers,” J. Polym. Res., vol. 20, no. 3, pp. 1–11,
2013.
- [41] A. Alli and B. Hazer, “Synthesis and characterization of poly(N-isopropyl acryl amide)-g
poly(LINOLEIC ACID)/poly(linolenic acid) graft copolymers,” JAOCS, J. Am. Oil Chem. Soc., vol.
88, no. 2, pp. 255–263, 2011.
- [42] A. Allı and B. Hazer, “Poly(N-isopropylacrylamide) thermoresponsive cross-linked conjugates
containing polymeric soybean oil and/or polypropylene glycol,” Eur. Polym. J., vol. 44, no. 6, pp.
1701–1713, 2008.
- [43] E. Isikci Koca, G. Bozdag, G. Cayli, D. Kazan, and P. Cakir Hatir, “Thermoresponsive
hydrogels based on renewable resources,” J. Appl. Polym. Sci., vol. 137, no. 28, 2020.
- [44] V. K. Singh, Sowmya, R. Kunal, A. Anis, Dillip, and K. Pradhan, “Olive oil based novel
thermo-reversible emulsion hydrogels for controlled delivery applications,” doi: 10.1007/s10856-013
5112-1.
- [45] I. N. Savina, V.Cnudde, S. D'Hollander, L. V. Hoorebeke, B. Mattiasson, I. Y. Galaev, and F.
D. Prez,, “Cryogels from poly(2-hydroxyethyl methacrylate): Macroporous, interconnected materials
with potential as cell scaffolds,” Soft Matter, vol. 3, no. 9, pp. 1176–1184, 2007.
- [46] E. Brynda, M. Houska, J. Kysilka, M. Pradny, P. Lesny, P. Jendelova, J. Michalek, and E.
Sykova, “Surface modification of hydrogels based on poly(2-hydroxyethylmethacrylate) with
extracellular matrix proteins,” doi: 10.1007/s10856-008-3625-9.
- [47] K. Şarkaya and A. Allı, “Synthesis and characterization of cryogels of p(HEMA-N
vinylformamide) and p(HEMA-N-Vinylpyrrolidone) for chemical release behaviour,” J. Porous
Mater., vol. 28, no. 3, pp. 853–865, 2021.
- [48] E. Karadağ and Ö. B. Üzüm, “A study on water and dye sorption capacities of novel ternary
acrylamide/sodium acrylate/PEG semi IPN hydrogels,” Polym. Bull. 2011 685, vol. 68, no. 5, pp.
1357–1368, 2011.
- [49] K. Şarkaya, M. Bakhshpour, and A. Denizli, “Ag + ions imprinted cryogels for selective
removal of silver ions from aqueous solutions,” Sep. Sci. Technol., pp. 1–12, 2018.
- [50] N. Kathuria, A. Tripathi, K. K. Kar, and A. Kumar, “Synthesis and characterization of elastic
and macroporous chitosan-gelatin cryogels for tissue engineering,” Acta Biomater., vol. 5, no. 1, pp.
406–418, 2009.
- [51] Ö. B. Üzüm and E. Karadağ, “Equilibrium Swelling Studies of Chemically Cross-Linked
Highly Swollen Acrylamide-Sodium Acrylate Hydrogels in Various Water-Solvent Mixtures,”
http://dx.doi.org/10.1080/03602551003664537, vol. 49, no. 6, pp. 609–616, 2010.
- [52] V. I. Lozinsky, I. Y. Galaev, F. M. Plieva, I. N. Savina, H. Jungvid, and B. Mattiasson,
“Polymeric cryogels as promising materials of biotechnological interest,” Trends Biotechnol., vol. 21,
no. 10, pp. 445–451, 2003.
- [53] R. Keçili, İ. Dolak, B. Ziyadanoğulları, A. Ersöz, and R. Say, “Ion imprinted cryogel-based
supermacroporous traps for selective separation of cerium(III) in real samples,” J. Rare Earths, vol.
36, no. 8, pp. 857–862, 2018.
Polimerik Linoleik Asit Içeren HEMA Bazlı Amfifilik Yarı IPN Kriyojellerin Hazırlanması, Karakterizasyonu ve Şişme Davranışının Araştırılması
Yıl 2022,
Cilt: 10 Sayı: 1, 154 - 169, 31.01.2022
Cansu Meltem Gürel
Koray Şarkaya
,
Abdulkadir Allı
Öz
Bu çalışmada, bitkisel yağ bazlı bir polimerik yağ asidi olan polimerik linoleik asit (PLina) ve yaygın olarak tercih edilen 2-hidroksietil metakrilat (HEMA) monomeri ile oluşturulacak yeni bir polimerik kriyojel sisteminin sentezlenmesi ve karakterize edilmesi amaçlanmıştır. Bu amaçla, öncelikle polimerik lineloik asit için sırasıyla otooksidasyon ve hidroksilasyon reaksiyonları gerçekleştirilmiştir. Hidroksillenmiş polimerik lineloik asit ve HEMA monomer, çapraz bağlayıcı olarak MBAA varlığında bir kriyojenik jelleşme reaksiyonuna tabi tutuldu. Elde edilen yeni kriyojeller, FTIR, SEM, BET, TGA analizleri ile karakterize edilmiştir. Sentezlenen PLinaOH-HEMA kriyojellerinin sudaki şişme davranışı kinetik çalışmalarla sonuçlandırılmıştır. Öte yandan, tüm kriyojellerin çözücü alımı için potansiyellerini görmek için araştırmak için bazı polar ve polar olmayan diğer çözücüler kullanıldı.
Proje Numarası
2019.05.03.1024
Kaynakça
- [1] L. Z. Rogovina, V. G. Vasil’ev, and E. E. Braudo, “Definition of the concept of polymer gel,”
Polym. Sci. - Ser. C, vol. 50, no. 1, pp. 85–92, 2008.
- [2] J. Jagur-Grodzinski, “Polymeric gels and hydrogels for biomedical and pharmaceutical
applications,” Polymers for Advanced Technologies, vol. 21, no. 1. pp. 27–47, 2010.
- [3] N. Sahiner, “Soft and flexible hydrogel templates of different sizes and various functionalities
for metal nanoparticle preparation and their use in catalysis,” Progress in Polymer Science, vol. 38,
no. 9. Pergamon, pp. 1329–1356, Sep. 01, 2013.
- [4] F. Horkay and J. F. Douglas, “Polymer Gels: Basics, Challenges, and Perspectives,” 2018.
Accessed: Jun. 22, 2021. [Online]. Available: https://pubs.acs.org/sharingguidelines.
- [5] J. Kopeček, “Polymer chemistry: Swell gels,” Nature, vol. 417, no. 6887. Nature Publishing
Group, pp. 388–391, May 23, 2002.
- [6] V. I. Lozinsky, “Cryogels on the basis of natural and synthetic polymers: Preparation,
properties and application,” Usp. Khim., vol. 71, no. 6, pp. 579–584, 2002.
- [7] K. Ito, “Novel cross-linking concept of polymer network: Synthesis, structure, and properties
of slide-ring gels with freely movable junctions,” Polym. J., vol. 39, no. 6, pp. 489–499, 2007.
- [8] V. I. Lozinsky and O. Okay, “Basic Principles of Cryotropic Gelation,” Adv. Polym. Sci., vol.
263, pp. 49–101, 2014.
- [9] F. M. Plleva, I. Y. Galaev, and B. Mattiasson, “Macroporous gels prepared at subzero
temperatures as novel materials for chromatography of particulate-containing fluids and cell culture
applications,” Journal of Separation Science, vol. 30, no. 11. pp. 1657–1671, 2007.
- [10] M. Zhai, F. Ma, J. Li, B. Wan, and N. Yu, “Preparation and properties of cryogel based on
poly(hydroxypropyl methacrylate),” J. Biomater. Sci. Polym. Ed., vol. 29, no. 12, pp. 1401–1425,
2018.
- [11] F. Ak, Z. Oztoprak, I. Karakutuk, and O. Okay, “Macroporous Silk Fibroin Cryogels,”
Biomacromolecules, vol. 14, no. 3, pp. 719–727, 2013.
- [12] S. A. Bencherif, R. W. Sands, O. A. Ali, W. A. Ali, S. A. Lewin, T. M. Braschler, T. Shih, C.
S. Verbeke, D. Bhatta, G. Dranoff, D. J. Mooney, “Injectable cryogel-based whole-cell cancer
vaccines,” Nat. Commun., vol. 6, no. 1, pp. 1–13, 2015.
- [13] T. Santos, A.Brito, R.Boto, P.Sousa, P.Almeida, C.Cruz and C.Tomaz, “Influenza DNA
vaccine purification using pHEMA cryogel support,” Sep.Purif. Technol., vol. 206, pp. 192–198,
2018.
- [14] T. D. Luong, M. Zoughaib, R. Garifullin, S. Kuznetsova, M. O. Guler, and T. I. Abdullin, “In
Situ functionalization of Poly(hydroxyethyl methacrylate) Cryogels with Oligopeptides via β
Cyclodextrin-Adamantane Complexation for Studying Cell-Instructive Peptide Environment,” ACS
Appl. Bio Mater., vol. 3, no. 2, pp. 1116–1128, 2020.
- [15] A. Cecilia, A. Baecker, E. Hamann, A. Rack, T. van de Kamp, F.J. Gruhl, R.Hofmann,
J.Moosmann, S. Hahn, J. Kashef, S. Bauer, T. Farago, L. Helfen, and T. Baumbach,, “Optimizing
structural and mechanical properties of cryogel scaffolds for use in prostate cancer cell culturing,”
Mater. Sci. Eng. C, vol. 71, pp. 465–472, 2017.
- [16] T. Kangkamano, A. Numnuam, W. Limbut, P. Kanatharana, and P. Thavarungkul, “Chitosan
cryogel with embedded gold nanoparticles decorated multiwalled carbon nanotubes modified electrode
for highly sensitive flow based non-enzymatic glucose sensor,” Sensors Actuators, B Chem., vol. 246,
pp. 854–863, 2017.
- [17] Z. Haider, A. Haleem, R. u S. Ahmad, U. Farooq, L. Shi, U. P. Clever, K. Memon, A. Fareed,
I. Khan, M. K. Mbogba, S. M. Chapal Hossain, F. Farooq, W. Ali, M. Abid, A. Qadir, W. He, J. Luo,
and G. Zhao, “Highly porous polymer cryogel based tribopositive material for high performance
triboelectric nanogenerators,” Nano Energy, vol. 68, p. 104294, 2020.
- [18] M. D. Stanescu, S. Gavrilas, R. Ludwig, D. Haltrich, and V. I. Lozinsky, “Preparation of
immobilized Trametes pubescens laccase on a cryogel-type polymeric carrier and application of the
biocatalyst to apple juice phenolic compounds oxidation,” Eur. Food Res. Technol., vol. 234, no. 4,
pp. 655–662, 2012.
- [19] M. Çadırcı, K. Şarkaya, and A. Allı, “Dielectric properties of CdSe quantum dots-loaded
cryogel for potential future electronic applications,” Mater. Sci. Semicond. Process., vol. 119, p.
105269, 2020.
- [20] T. Shimizu, M. Masuda, and H. Minamikawa, “Supramolecular nanotube architectures based
on amphiphilic molecules,” Chemical Reviews, vol. 105, no. 4. American Chemical Society , pp.
1401–1443, 2005.
- [21] C. XiaoMing, D. Wei, and Z. XianRen, “SCIENCE CHINA Chemistry Self-assembly of
amphiphilic molecules: A review on the recent computer simulation results,” vol. 53, no. 9, pp. 1853
1861, 2010.
[22] G. Galli and E. Martinelli, “Amphiphilic Polymer Platforms: Surface Engineering of Films for
Marine Antibiofouling,” Macromol. Rapid Commun., vol. 38, no. 8, p. 1600704, 2017.
- [23] C. S. Patrickios and T. K. Georgiou, “Covalent amphiphilic polymer networks,” Current
Opinion in Colloid and Interface Science, vol. 8, no. 1. Elsevier BV, pp. 76–85, Mar. 01, 2003.
- [24] S. Zarzhitsky, H. Edri, Z. Azoulay, I. Cohen, Y. Ventura, A. Gitelman, and H. Rapaport, “The
effect of pH and calcium ions on the stability of amphiphilic and anionic β-sheet peptide hydrogels,”
Biopolymers, vol. 100, no. 6, pp. 760–772, 2013.
- [25] X. R. Zhou, R. Ge, and S. Z. Luo, “Self-assembly of pH and calcium dual-responsive peptide
amphiphilic hydrogel,” J. Pept. Sci., vol. 19, no. 12, pp. 737–744, 2013.
- [26] W. Ha, J. Yu, X. Y. Song, J. Chen, and Y. P. Shi, “Tunable temperature-responsive
supramolecular hydrogels formed by prodrugs as a codelivery system,” ACS Appl. Mater. Interfaces,
vol. 6, no. 13, pp. 10623–10630, 2014.
- [27] M. H. Hsiao, M.Larsson, A. Larsson, H. Evenbratt, Y. Y. Chen, Y. Y. Chen, and D. M. Liu,
“Design and characterization of a novel amphiphilic chitosan nanocapsule based thermo-gelling biogel
with sustained in vivo release of the hydrophilic anti-epilepsy drug ethosuximide,” J. Control.
Release, vol. 161, no. 3, pp. 942–948, 2012.
- [28] W. C. Huang, S. Y. Chen, and D. M. Liu, “An amphiphilic silicone-modified polysaccharide
molecular hybrid with in situ forming of hierarchical superporous architecture upon swelling,” Soft
Matter, vol. 8, no. 42, pp. 10868–10876, 2012.
- [29] S. Song, L. Feng, A. Song, and J. Hao, “Room-temperature super hydrogel as dye adsorption
agent,” J. Phys. Chem. B, vol. 116, no. 42, pp. 12850–12856, 2012.
- [30] S. Das, P. Pandey, S. Mohanty, and S. K. Nayak, “Insight on Castor Oil Based Polyurethane
and Nanocomposites: Recent Trends and Development,” Polymer - Plastics Technology and
Engineering, vol. 56, no. 14. Taylor and Francis Inc., pp. 1556–1585, Sep. 22, 2017.
[31] P. Anastas and N. Eghbali, “Green Chemistry: Principles and Practice,” Chem. Soc. Rev., vol.
39, no. 1, pp. 301–312, 2010.
- [32] M. A. Sawpan, “Polyurethanes from vegetable oils and applications: a review,” J. Polym. Res.
2018 258, vol. 25, no. 8, pp. 1–15, 2018.
- [33] H.-M. Kim, H.-R. Kim, C. T. Hou, Beom, and S. Kim, “Biodegradable Photo-Crosslinked
Thin Polymer Networks Based on Vegetable Oil Hydroxy Fatty Acids,” doi: 10.1007/s11746-010
1634-6.
- [34] R. L. Shogren, Z. Petrovic, Z. Liu, and S. Z. Erhan, “Biodegradation behavior of some
vegetable oil-based polymers,” J. Polym. Environ., vol. 12, no. 3, pp. 173–178, 2004.
- [35] B. Hazer, “Chemical Modification of Synthetic and Biosynthetic Polyesters,” in Biopolymers
Online, Wiley, 2002.
- [36] P. S. Sathiskumar and G. Madras, “Synthesis, characterization, degradation of biodegradable
castor oil based polyesters,” Polym. Degrad. Stab., vol. 96, no. 9, pp. 1695–1704, 2011.
- [37] S. Miao, P. Wang, Z. Su, and S. Zhang, “Vegetable-oil-based polymers as future polymeric
biomaterials,” Acta Biomaterialia, vol. 10, no. 4. Elsevier BV, pp. 1692–1704, Apr. 01, 2014.
- [38] G. Acik, M. Kamaci, C. Altinkok, H. R. F. Karabulut, and M. A. Tasdelen, “Synthesis and
properties of soybean oil-based biodegradable polyurethane films,” Prog. Org. Coatings, vol. 123, pp.
261–266, 2018.
- [39] B. Das, U. Konwar, M. Mandal, and N. Karak, “Sunflower oil based biodegradable
hyperbranched polyurethane as a thin film material,” Ind. Crops Prod., vol. 44, pp. 396–404, 2013.
- [40] B. Çakmakli, B. Hazer, T. Erdoğan, and A. G. Mutlu, “DNA adsorption and dynamic
mechanical analysis of polymeric oil/oil acid copolymers,” J. Polym. Res., vol. 20, no. 3, pp. 1–11,
2013.
- [41] A. Alli and B. Hazer, “Synthesis and characterization of poly(N-isopropyl acryl amide)-g
poly(LINOLEIC ACID)/poly(linolenic acid) graft copolymers,” JAOCS, J. Am. Oil Chem. Soc., vol.
88, no. 2, pp. 255–263, 2011.
- [42] A. Allı and B. Hazer, “Poly(N-isopropylacrylamide) thermoresponsive cross-linked conjugates
containing polymeric soybean oil and/or polypropylene glycol,” Eur. Polym. J., vol. 44, no. 6, pp.
1701–1713, 2008.
- [43] E. Isikci Koca, G. Bozdag, G. Cayli, D. Kazan, and P. Cakir Hatir, “Thermoresponsive
hydrogels based on renewable resources,” J. Appl. Polym. Sci., vol. 137, no. 28, 2020.
- [44] V. K. Singh, Sowmya, R. Kunal, A. Anis, Dillip, and K. Pradhan, “Olive oil based novel
thermo-reversible emulsion hydrogels for controlled delivery applications,” doi: 10.1007/s10856-013
5112-1.
- [45] I. N. Savina, V.Cnudde, S. D'Hollander, L. V. Hoorebeke, B. Mattiasson, I. Y. Galaev, and F.
D. Prez,, “Cryogels from poly(2-hydroxyethyl methacrylate): Macroporous, interconnected materials
with potential as cell scaffolds,” Soft Matter, vol. 3, no. 9, pp. 1176–1184, 2007.
- [46] E. Brynda, M. Houska, J. Kysilka, M. Pradny, P. Lesny, P. Jendelova, J. Michalek, and E.
Sykova, “Surface modification of hydrogels based on poly(2-hydroxyethylmethacrylate) with
extracellular matrix proteins,” doi: 10.1007/s10856-008-3625-9.
- [47] K. Şarkaya and A. Allı, “Synthesis and characterization of cryogels of p(HEMA-N
vinylformamide) and p(HEMA-N-Vinylpyrrolidone) for chemical release behaviour,” J. Porous
Mater., vol. 28, no. 3, pp. 853–865, 2021.
- [48] E. Karadağ and Ö. B. Üzüm, “A study on water and dye sorption capacities of novel ternary
acrylamide/sodium acrylate/PEG semi IPN hydrogels,” Polym. Bull. 2011 685, vol. 68, no. 5, pp.
1357–1368, 2011.
- [49] K. Şarkaya, M. Bakhshpour, and A. Denizli, “Ag + ions imprinted cryogels for selective
removal of silver ions from aqueous solutions,” Sep. Sci. Technol., pp. 1–12, 2018.
- [50] N. Kathuria, A. Tripathi, K. K. Kar, and A. Kumar, “Synthesis and characterization of elastic
and macroporous chitosan-gelatin cryogels for tissue engineering,” Acta Biomater., vol. 5, no. 1, pp.
406–418, 2009.
- [51] Ö. B. Üzüm and E. Karadağ, “Equilibrium Swelling Studies of Chemically Cross-Linked
Highly Swollen Acrylamide-Sodium Acrylate Hydrogels in Various Water-Solvent Mixtures,”
http://dx.doi.org/10.1080/03602551003664537, vol. 49, no. 6, pp. 609–616, 2010.
- [52] V. I. Lozinsky, I. Y. Galaev, F. M. Plieva, I. N. Savina, H. Jungvid, and B. Mattiasson,
“Polymeric cryogels as promising materials of biotechnological interest,” Trends Biotechnol., vol. 21,
no. 10, pp. 445–451, 2003.
- [53] R. Keçili, İ. Dolak, B. Ziyadanoğulları, A. Ersöz, and R. Say, “Ion imprinted cryogel-based
supermacroporous traps for selective separation of cerium(III) in real samples,” J. Rare Earths, vol.
36, no. 8, pp. 857–862, 2018.