Araştırma Makalesi
BibTex RIS Kaynak Göster

Improvement and Analysis of Phase-Phase Failure of Double Feed Induction Generator Using Maximum Power Monitoring Method

Yıl 2022, Cilt: 10 Sayı: 3, 1524 - 1542, 31.07.2022
https://doi.org/10.29130/dubited.1052660

Öz

This study presents an analysis and control method for the doubly fed induction generator (DFIG) based wind energy production under the conditions of sudden grid voltage dips. The control aims are as follows: limiting the rotor currents, suppressing the fluctuations in the torque and suppressing the dc-link voltage fluctuation via the converter controls and ensuring maximum power point tracking. Rotor side converter (RSC) and grid side converter (GSC) structures have been given in the article and their limitations have been specified. Maximum power tracking control block has also been included in the system and its structure has been given. In this study; while RSC is controlled in a way that it will suppress the fluctuations in the torque and rotor currents, GSC is controlled in a way that it will suppress the fluctuations in dc-link voltage while taking the rotor power impact into consideration. Crowbar unit has been used in the rotor side to minimize these impacts. This unit is activated at the moment when a grid dip occurs and deactivates the RSC side. In this way, RSC side will not be affected by the high current fluctuations. The detailed results of the study were carried out in the MATLAB/Simulink environment,
and the effectiveness of the proposed method was supported by the graphic results.

Kaynakça

  • [1] J.Arbi, M.Ghorbal, I.Belkhodja and L.Charaabi, "Direct virtual torque control for doubly fed induction generator grid connection," IEEE Transactions on Industrial Electronics. vol. 56, no.10, pp. 4163-4173, 2009.
  • [2] L. Shuhui, and T. A. Haskew, "Characteristic study of vector-controlled doubly-fed induction generator in stator-flux-oriented frame," Electric Power Components and Systems, pp. 990-1015, 2008.
  • [3] B.H. Chowdhury and S. Chellapilla, “DFIG control for variable speed wind power generation,” Electric Power System Research, vol. 76 pp. 786-800, 2006.
  • [4] R. Fadaeinedjad, M. Moallem and G. Moschopoulos, “Simulation of a wind turbine with DFIG by FAST and Simulink.” IEEE Transactions on Energy Conversion, vol. 23, no.2, pp. 690-700, 2008.
  • [5] Y. Wang, D. Zhao, B. Zhao and H. Xu, “A new type of control strategy of DFIG in wind power system based on SMC,” International Conference on Electrical Machines and Systems, pp. 2428-2431, 2008.
  • [6] W. Guo, L. Xiao, S. Dai, Y. Li, X. Xu, W. Zhou and L. Li, “LVRT capability enhancement of DFIG with switch-type fault current limiter,” IEEE Transactions on Industrial Electronics, vol. 62, no.1, pp. 332-342, 2014.
  • [7] J. Lopez, E. GubÍa, P. Sanchis, X. Roboam and L Marroyo, “Wind turbines based on doubly fed induction generator under asymmetrical voltage dips,” IEEE Transactions on EnergyConversion, vol. 23, no. 1, pp. 321-330, 2008.
  • [8] M. Mohseni S. M. Islam, and S. Masoum, “Impacts of symmetrical and asymmetrical voltage sags on DFIG-Based wind turbines considering phase-angle jump, voltage recovery, and sag parameters,” IEEE Transactions on Power Electronics, vol.26, no.5, pp.1587-1598, 2011.
  • [9] P. Makolo, J. J. Justo, F. Mwasilu, and R. Zamora, “Fault ride through technique for DFIG based wind turbines under grid three-phase faults, In 2018 Australasian Universities Power Engineering Conference (AUPEC), 2018, pp. 1-5.
  • [10] J. Lopez, E. Gubia, E. Olea, J. Ruiz, L. Marroyo, “Ride Through of Wind Turbines With Doubly Fed Induction Generator Under Dismetrical Voltage Dips.” IEEE Transactions on Industrial Electronics. vol. 56, no. 10, pp. 4246-4254, 2009.
  • [11] D. Xie, Z. Xu, L. Yang, J. Østergaard, Y. Xue and K. P. Wong, “A comprehensive LVRT control strategy for DFIG wind turbines with enhanced reactive power support.” IEEE Transactions on Power Systems, vol.28, no.3, pp. 3302-3310, 2013.
  • [12] H. Geng, C. Liu and G. Yang, “LVRT capability of DFIG-based WECS under asymmetrical Grid fault condition,” IEEE transactions on Industrial electronics, vol.60, no.6, pp.2495-2509, 2012.
  • [13] W. Wang, M. Sun, and X. Zhu, “Analysis on the Low Voltage Ride Through Technology of DFIG [J].” Automation of Electric Power Systems, 2007, 23.
  • [14] J. J. Justo, and F. A. Mwasilu, “Low voltage ride through enhancement for wind turbines equipped with DFIG under symmetrical grid faults.” Tanzania Journal of Engineering and Technology, vol.37, no.2, 2019.
  • [15] P. Mukherjee and V. V. Rao, “Superconducting magnetic energy storage for stabilizing grid integrated with wind power generation systems.” Journal of Modern Power Systems and Clean Energy, vol.7, no.2, pp.400-411, 2019.
  • [16] Q. U. Yanbin, G. A. O. Le, M. A. Guangfu, S. O. N. G. Huihui and W. A. N. G. Shitao, “Crowbar resistance value-switching scheme conjoint analysis based on statistical sampling for LVRT of DFIG,” Journal of Modern Power Systems and Clean Energy, vol.7, no.3, pp.558-567, 2019.
  • [17] F. A. N. Zhanfeng, S. O. N. G. Guobing, K. A. N. G. Xiaoning, T. A. N. G. Jisi, and W. A. N. G. Xiaobo, “Three-phase fault direction identification method for outgoing transmission line of DFIG based wind farms.” Journal of Modern Power Systems and Clean Energy, vol.7, no.5, pp.1155-1164, 2019.
  • [18] A. H. Kasem, E. F. El-Saadany, H. H. El-Tamaly and M. A. A. Wahab, “An improved fault ride-through strategy for doubly fed induction generator-based wind turbines.” IET Renew. Power Gener., vol. 2, no. 4, pp. 201-214, 2008.
  • [19] A. D. Hansen, P. Sørensen, F. Iov and F. Blaabjerg, “Control of variable speed wind turbines with doubly-fed induction generators. Wind Eng., vol. 28, no. 4, pp. 411-432, 2004.
  • [20] Y. Lei, A. Mullane, G. Lightbody and R. Yacamini, “Modeling of the wind turbine with a doubly fed induction generator for grid integration studies.” IEEE Trans. Energy Convers., vol. 21, no. 1, pp. 257–264, 2006.
  • [21] R. Pena, J. C. Clare and G. M. Asher, “Doubly fed induction generator using back-to-back PWM converters and its application to variable-speed wind-energy generation.” IEE Proc.-Electr. Power Appl., vol. 143, no. 3, pp. 231-241, 1996.
  • [22] Z. Rafiee, S. S. Najafi, M. Rafiee, M. R. Aghamohammadi and M. Pourgholi, “Optimized control of Coordinated Series Resistive Limiter and SMES for improving LVRT using TVC in DFIG base wind farm,” Physica C: Superconductivity and its Applications, 570, 1353607, 2020.
  • [23] A. T. Nguyen, and D. C. Lee, (2020, October). “LVRT Control based on Partial State Feedback Linearization for SCIG Wind Turbine Systems.” In 2020 IEEE Energy Conversion Congress and Exposition (ECCE), 2020, pp. 93-98.
  • [24] X. Yifan, A. Aimin, Z. Yingying and C. Wei, “Design and Implementation of Crowbar Circuits Combined with Chopper Circuits for LVRT in Wind Farms.” In Journal of Physics: Conference Series, vol. 1639, no. 1, pp. 012040, 2020.
  • [25] M. A. S. Ali, K. K. Mehmood, S. Baloch and C. H. Kim, “Modified rotor-side converter control design for improving the LVRT capability of a DFIG-based WECS.” Electric Power Systems Research, 186, 106403, 2020.
  • [26] M. Firouzi, “Low-voltage ride-through (LVRT) capability enhancement of DFIG-based wind farm by using bridge-type superconducting fault current limiter (BTSFCL).” Journal of Power Technologies, vol.99, no.4, pp.245-253, 2020.

Maksimum Güç İzleme Yöntemi Kullanılan Çift Beslemeli Asenkron Generatörün Faz-Faz Arızasının İyileştirilmesi ve Analizi

Yıl 2022, Cilt: 10 Sayı: 3, 1524 - 1542, 31.07.2022
https://doi.org/10.29130/dubited.1052660

Öz

Bu çalışma, ani şebeke gerilim düşüşleri koşullarında çift beslemeli endüksiyon generatörü (ÇBAG) tabanlı rüzgar enerjisi üretimi için bir analiz ve kontrol yöntemi sunmaktadır. Kontrol amaçları şunlardır: Rotor akımlarının sınırlandırılması, torktaki dalgalanmaların bastırılması ve konvertör kontrolleri aracılığıyla dc-link voltaj dalgalanmasının bastırılması ve maksimum güç noktası takibinin sağlanması. Makalede rotor tarafı dönüştürücü (RTD) ve şebeke tarafı dönüştürücü (ŞTD) yapıları verilmiş ve sınırlamaları belirtilmiştir. Maksimum güç takip kontrol bloğu da sisteme dahil edilmiş ve yapısı verilmiştir. Bu çalışmada; RTD, tork ve rotor akımlarındaki dalgalanmaları bastıracak şekilde kontrol edilirken, ŞTD, rotor güç etkisi dikkate alınarak dc-bara gerilimindeki dalgalanmaları bastıracak şekilde kontrol edilir. Bu etkileri en aza indirmek için rotor tarafında crowbar ünitesi kullanılmıştır. Bu ünite, şebeke geriliminde bir düşüş meydana geldiği anda etkinleştirilir ve RTD tarafını devre dışı bırakır. Bu sayede RTD tarafı yüksek akım dalgalanmalarından etkilenmeyecektir. Çalışmanı detaylı sonuçları MATLAB/Simulink ortamında gerçekleştirilerek, önerilen metodun etkinliği grafik sonuçları ile desteklenmiştir.

Kaynakça

  • [1] J.Arbi, M.Ghorbal, I.Belkhodja and L.Charaabi, "Direct virtual torque control for doubly fed induction generator grid connection," IEEE Transactions on Industrial Electronics. vol. 56, no.10, pp. 4163-4173, 2009.
  • [2] L. Shuhui, and T. A. Haskew, "Characteristic study of vector-controlled doubly-fed induction generator in stator-flux-oriented frame," Electric Power Components and Systems, pp. 990-1015, 2008.
  • [3] B.H. Chowdhury and S. Chellapilla, “DFIG control for variable speed wind power generation,” Electric Power System Research, vol. 76 pp. 786-800, 2006.
  • [4] R. Fadaeinedjad, M. Moallem and G. Moschopoulos, “Simulation of a wind turbine with DFIG by FAST and Simulink.” IEEE Transactions on Energy Conversion, vol. 23, no.2, pp. 690-700, 2008.
  • [5] Y. Wang, D. Zhao, B. Zhao and H. Xu, “A new type of control strategy of DFIG in wind power system based on SMC,” International Conference on Electrical Machines and Systems, pp. 2428-2431, 2008.
  • [6] W. Guo, L. Xiao, S. Dai, Y. Li, X. Xu, W. Zhou and L. Li, “LVRT capability enhancement of DFIG with switch-type fault current limiter,” IEEE Transactions on Industrial Electronics, vol. 62, no.1, pp. 332-342, 2014.
  • [7] J. Lopez, E. GubÍa, P. Sanchis, X. Roboam and L Marroyo, “Wind turbines based on doubly fed induction generator under asymmetrical voltage dips,” IEEE Transactions on EnergyConversion, vol. 23, no. 1, pp. 321-330, 2008.
  • [8] M. Mohseni S. M. Islam, and S. Masoum, “Impacts of symmetrical and asymmetrical voltage sags on DFIG-Based wind turbines considering phase-angle jump, voltage recovery, and sag parameters,” IEEE Transactions on Power Electronics, vol.26, no.5, pp.1587-1598, 2011.
  • [9] P. Makolo, J. J. Justo, F. Mwasilu, and R. Zamora, “Fault ride through technique for DFIG based wind turbines under grid three-phase faults, In 2018 Australasian Universities Power Engineering Conference (AUPEC), 2018, pp. 1-5.
  • [10] J. Lopez, E. Gubia, E. Olea, J. Ruiz, L. Marroyo, “Ride Through of Wind Turbines With Doubly Fed Induction Generator Under Dismetrical Voltage Dips.” IEEE Transactions on Industrial Electronics. vol. 56, no. 10, pp. 4246-4254, 2009.
  • [11] D. Xie, Z. Xu, L. Yang, J. Østergaard, Y. Xue and K. P. Wong, “A comprehensive LVRT control strategy for DFIG wind turbines with enhanced reactive power support.” IEEE Transactions on Power Systems, vol.28, no.3, pp. 3302-3310, 2013.
  • [12] H. Geng, C. Liu and G. Yang, “LVRT capability of DFIG-based WECS under asymmetrical Grid fault condition,” IEEE transactions on Industrial electronics, vol.60, no.6, pp.2495-2509, 2012.
  • [13] W. Wang, M. Sun, and X. Zhu, “Analysis on the Low Voltage Ride Through Technology of DFIG [J].” Automation of Electric Power Systems, 2007, 23.
  • [14] J. J. Justo, and F. A. Mwasilu, “Low voltage ride through enhancement for wind turbines equipped with DFIG under symmetrical grid faults.” Tanzania Journal of Engineering and Technology, vol.37, no.2, 2019.
  • [15] P. Mukherjee and V. V. Rao, “Superconducting magnetic energy storage for stabilizing grid integrated with wind power generation systems.” Journal of Modern Power Systems and Clean Energy, vol.7, no.2, pp.400-411, 2019.
  • [16] Q. U. Yanbin, G. A. O. Le, M. A. Guangfu, S. O. N. G. Huihui and W. A. N. G. Shitao, “Crowbar resistance value-switching scheme conjoint analysis based on statistical sampling for LVRT of DFIG,” Journal of Modern Power Systems and Clean Energy, vol.7, no.3, pp.558-567, 2019.
  • [17] F. A. N. Zhanfeng, S. O. N. G. Guobing, K. A. N. G. Xiaoning, T. A. N. G. Jisi, and W. A. N. G. Xiaobo, “Three-phase fault direction identification method for outgoing transmission line of DFIG based wind farms.” Journal of Modern Power Systems and Clean Energy, vol.7, no.5, pp.1155-1164, 2019.
  • [18] A. H. Kasem, E. F. El-Saadany, H. H. El-Tamaly and M. A. A. Wahab, “An improved fault ride-through strategy for doubly fed induction generator-based wind turbines.” IET Renew. Power Gener., vol. 2, no. 4, pp. 201-214, 2008.
  • [19] A. D. Hansen, P. Sørensen, F. Iov and F. Blaabjerg, “Control of variable speed wind turbines with doubly-fed induction generators. Wind Eng., vol. 28, no. 4, pp. 411-432, 2004.
  • [20] Y. Lei, A. Mullane, G. Lightbody and R. Yacamini, “Modeling of the wind turbine with a doubly fed induction generator for grid integration studies.” IEEE Trans. Energy Convers., vol. 21, no. 1, pp. 257–264, 2006.
  • [21] R. Pena, J. C. Clare and G. M. Asher, “Doubly fed induction generator using back-to-back PWM converters and its application to variable-speed wind-energy generation.” IEE Proc.-Electr. Power Appl., vol. 143, no. 3, pp. 231-241, 1996.
  • [22] Z. Rafiee, S. S. Najafi, M. Rafiee, M. R. Aghamohammadi and M. Pourgholi, “Optimized control of Coordinated Series Resistive Limiter and SMES for improving LVRT using TVC in DFIG base wind farm,” Physica C: Superconductivity and its Applications, 570, 1353607, 2020.
  • [23] A. T. Nguyen, and D. C. Lee, (2020, October). “LVRT Control based on Partial State Feedback Linearization for SCIG Wind Turbine Systems.” In 2020 IEEE Energy Conversion Congress and Exposition (ECCE), 2020, pp. 93-98.
  • [24] X. Yifan, A. Aimin, Z. Yingying and C. Wei, “Design and Implementation of Crowbar Circuits Combined with Chopper Circuits for LVRT in Wind Farms.” In Journal of Physics: Conference Series, vol. 1639, no. 1, pp. 012040, 2020.
  • [25] M. A. S. Ali, K. K. Mehmood, S. Baloch and C. H. Kim, “Modified rotor-side converter control design for improving the LVRT capability of a DFIG-based WECS.” Electric Power Systems Research, 186, 106403, 2020.
  • [26] M. Firouzi, “Low-voltage ride-through (LVRT) capability enhancement of DFIG-based wind farm by using bridge-type superconducting fault current limiter (BTSFCL).” Journal of Power Technologies, vol.99, no.4, pp.245-253, 2020.
Toplam 26 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Mustafa Dursun 0000-0001-9952-9358

Yayımlanma Tarihi 31 Temmuz 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 10 Sayı: 3

Kaynak Göster

APA Dursun, M. (2022). Improvement and Analysis of Phase-Phase Failure of Double Feed Induction Generator Using Maximum Power Monitoring Method. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi, 10(3), 1524-1542. https://doi.org/10.29130/dubited.1052660
AMA Dursun M. Improvement and Analysis of Phase-Phase Failure of Double Feed Induction Generator Using Maximum Power Monitoring Method. DÜBİTED. Temmuz 2022;10(3):1524-1542. doi:10.29130/dubited.1052660
Chicago Dursun, Mustafa. “Improvement and Analysis of Phase-Phase Failure of Double Feed Induction Generator Using Maximum Power Monitoring Method”. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi 10, sy. 3 (Temmuz 2022): 1524-42. https://doi.org/10.29130/dubited.1052660.
EndNote Dursun M (01 Temmuz 2022) Improvement and Analysis of Phase-Phase Failure of Double Feed Induction Generator Using Maximum Power Monitoring Method. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 10 3 1524–1542.
IEEE M. Dursun, “Improvement and Analysis of Phase-Phase Failure of Double Feed Induction Generator Using Maximum Power Monitoring Method”, DÜBİTED, c. 10, sy. 3, ss. 1524–1542, 2022, doi: 10.29130/dubited.1052660.
ISNAD Dursun, Mustafa. “Improvement and Analysis of Phase-Phase Failure of Double Feed Induction Generator Using Maximum Power Monitoring Method”. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 10/3 (Temmuz 2022), 1524-1542. https://doi.org/10.29130/dubited.1052660.
JAMA Dursun M. Improvement and Analysis of Phase-Phase Failure of Double Feed Induction Generator Using Maximum Power Monitoring Method. DÜBİTED. 2022;10:1524–1542.
MLA Dursun, Mustafa. “Improvement and Analysis of Phase-Phase Failure of Double Feed Induction Generator Using Maximum Power Monitoring Method”. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi, c. 10, sy. 3, 2022, ss. 1524-42, doi:10.29130/dubited.1052660.
Vancouver Dursun M. Improvement and Analysis of Phase-Phase Failure of Double Feed Induction Generator Using Maximum Power Monitoring Method. DÜBİTED. 2022;10(3):1524-42.