Araştırma Makalesi
BibTex RIS Kaynak Göster

Optimization of Hybrid Sonophotocatalytic Decolorization of Rhodamine B (RhB) Dye Using TiO2 Nanocatalyst

Yıl 2022, Cilt: 10 Sayı: 4, 1998 - 2014, 25.10.2022

Öz

Rhodamine B (RhB) dye is studied as target pollutant in this work due to its various adverse effects on skin, gastrointestinal and respiration systems. In the present study, decolorization of RhB dye by sonophotocatalysis (SPC) method in a synthetic aqueous solution was investigated using a hybrid laboratory-scale, batch-mode reactor system with a pure, nano-sized catalyst under ultraviolet A (UVA) light (~365 nm) irradiation for 90 minutes. To achieve maximum RhB decolorization, independent parameters which were TiO2 concentration (0.5 to 2.5 g/L), initial pH (2 to 10) and concentration of RhB (10 to 50 mg/L), were chosen in this method. The three-level Box-Behnken factorial design (BBD) was selected to carry out the optimization method. The finding results presented that TiO2 concentration of 0.5 g/L, pH 2, and an initial RhB concentration of 15.25 mg/L were optimum parameters to achieve maximum RhB decolorization. Further, lamp type, lamp electrical power, and adding H2O2 that could affect the removal efficiency were investigated as a first time. Based on ANOVA analysis, concentration of RhB stated the most significant effects followed by pH and TiO2 concentration on the model. A good compliance between experimental results and predictive values were obtained by the regression analysis for the model with R2 value of 0.9902. The results showed that the Langmuir–Hinshelwood (L-H) model could clarify the SPC process well, where kc and KLH were 0.941 mg/Lmin and 0.129 L/mg, respectively.

Destekleyen Kurum

Bolu Abant Izzet Baysal University Scientific Research Projects

Proje Numarası

2021.09.02.1498

Teşekkür

This work was partially supported financially by the BAIBU Scientific Research Project Number: 2021.09.02.1498. The author Gamze Dogdu Okcu contributed to the conception and design, conducting the experiment; acquisition, analysis, and interpretation of the data; and writing of the article. Nazmiye Ebru Şen and Simge Dalkılıç were gratefully acknowledged by the author for their invaluable helps in running experiments.

Kaynakça

  • [1]R. Wang, M. Shi, F. Xu, Y. Qiu, P. Zhang, K. Shen, Q. Zhao, J. Yu and Y. Zhang, “Graphdiyne-modified TiO2 nanofibers with osteoinductive and enhanced photocatalytic antibacterial activities to prevent implant infection,” Nature Communications, vol. 11, pp. 4465, 2020.
  • [2]Uludağ İhracatçı Birlikleri Genel Sekreterlikleri Ar–Ge Şubesi. “Türkiye Tekstil Sektörü ve Bursa.” https://uib.org.tr/tr/kbfile/turkiye_tekstil_sektoru_ve_bursa_ocak_2020 (accessed Jan. 21, 2020).
  • [3]V. B. K. S. Mullapudi, A. Salveru and A. J. Kora, “An in-house UV-photolysis setup for the rapid degradation of both cationic and anionic dyes in dynamic mode through UV/H2O2-based advanced oxidation process,” International Journal of Environmental Analytical Chemistry, pp. 1-17, 2020.
  • [4]A. Selim, S. Kaur, A.H. Dar, S. Sartaliya and G. Jayamurugan, “Synergistic effects of carbon dots and palladium nanoparticles enhance the sonocatalytic performance for rhodamine B degradation in the absence of light,” ACS Omega, vol. 5, pp. 22603–22613, 2020.
  • [5]Y. S. Lai, P. Parameswaran, A. Li, A. Aguinaga and B. E. Rittmann, “Selective fermentation of carbohydrate and protein fractions of Scenedesmus, and biohydrogenation of its lipid fraction for enhanced recovery of saturated fatty acids,” Biotechnology and Bioengineering, vol. 113, pp. 320-329, 2016.
  • [6]T. B. T. Dao, T. T. L. Ha, T. D. Nguyen, H. N. Le, C. N. Ha-Thuc, T. M. L. Nguyen, P. Perre and D. M. Nguyen, “Effectiveness of photocatalysis of MMT-supported TiO2 and TiO2 nanotubes for rhodamine B degradation,” Chemosphere, vol. 280, pp. 130802, 2021.
  • [7]C. Lops, A. Ancona, K. Di Cesare, B. Dumontel, N. Garino, G. Canavese, S. Hérnandez and V. Cauda, “Sonophotocatalytic degradation mechanisms of Rhodamine B dye via radicals generation by micro- and nano-particles of ZnO,” Applied Catalysis B: Environmental, vol. 243, pp. 629-640, 2019.
  • [8]P. Razaghi, K. Dashtian, F. Yousefi, R. Karimi and M. Ghaedi, “Gold anchoring to CuFe2F8(H2O)2 oxyfluoride for robust sono-photodegradation of Rhodamine-B,” Journal of Cleaner Production, vol. 313, pp. 127916, 2021.
  • [9]H. Selcuk, “Decolorization and detoxification of textile wastewater by ozonation and coagulation processes,” Dyes and Pigments, vol. 64, pp. 217-222, 2005.
  • [10]S. P. Hinge, M. S. Orpe, K. V. Sathe, G. D. Tikhe, N. S. Pandey, K. N. Bawankar, M. V. Bagal, V. G. Mohod and R. Parag, “Combined removal of Rhodamine B and Rhodamine 6G from wastewater using novel treatment approaches based on ultrasonic and ultraviolet irradiations,” Desalination and Water Treatment, vol. 3994, pp. 0-13, 2016.
  • [11]P. R. Gogate, M. Sivakumar, and A. B. Pandit, “Destruction of Rhodamine B using novel sonochemical reactor with capacity of 7.5 l,” Separation and Purification Technology, vol. 34, pp. 130-24, 2004.
  • [12]E. Adamek, W. Baran, J. Ziemiańska, and A. Sobczak, “The Comparison of Photocatalytic Degradation and Decolorization Processes of Dyeing Effluents,” International Journal of Photoenergy, pp. 578191, 2013.
  • [13]D. Pratiwi, A. W. Indrianingsih, C. Darsih, and Hernawan, “Decolorization and Degradation of Batik Dye Effluent using Ganoderma lucidum,” IOP Conf. Series: Earth and Environmental Science, vol. 101, pp. 012034, 2017.
  • [14]J. A. Ayala, C. O. Castillo and R. S. Ruiz, “Ultrasonic, ultraviolet, and hybrid catalytic processes for the degradation of rhodamine B dye: Decolorization kinetics,” Revista Mexicana de Ingeniera Quimica, vol. 16, 521-529, 2017.
  • [15]K. Soutsas, V. Karayannis, I. Poulios, A. Riga, K. Ntampegliotis, X. Spiliotis, and G. Papapolymerou, “Decolorization and degradation of reactive azo dyes via heterogeneous photocatalytic processes,” Desalination, vol. 250, 345-350, 2010.
  • [16]T. Rasheed, M. Bilal, H. M. N. Iqbal, S. Z. H. Shah, H. Hu, X. Zhang, and Y. Zhou, “TiO2/UV-assisted rhodamine B degradation: putative pathway and identification of intermediates by UPLC/MS,” Environmental Technology, vol. 39, 1533–1543, 2018.
  • [17]P. Zawadzki, “Comparative studies of Rhodamine B decolorization in the combined process Na2S2O8 /visible light/ultrasound,” Desalination and Water Treatment, vol. 213, pp. 269-278, 2021.
  • [18]D. Xu and H. Ma, “Degradation of rhodamine B in water by ultrasound-assisted TiO2 photocatalysis,” Journal of Cleaner Production, vol. 313, pp. 127758, 2021.
  • [19]F. Ahmedchekkat, M.S. Medjram, M. Chiha and A.M. Ali Al-bsoul, “Sonophotocatalytic degradation of Rhodamine B using a novel reactor geometry: effect of operating conditions,” Chemical Engineering Journal, vol. 178, pp. 244–251, 2011.
  • [20]K. P. Mishra and P. R. Gogate, “Intensification of degradation of aqueous solutions of rhodamine B using sonochemical reactors at operating capacity of 7 L,” Journal of Environmental Management, vol. 92, pp. 1972-1977, 2011.
  • [21]P. Singh, A. Dhir and V. K. Sangal, “Optimization of Photocatalytic Process Parameters for the Degradation of Acrylonitrile Using Box Behnken Design,” Desalination and Water Treatment, 55, 1501–1508, 2015.
  • [22] G. E. P. Box, W. G. Hunter and J. S. Hunter, “Statics for Experiments: An Introduction to Design Data Analysis and Model Building”, Wiley: New York, 1978.
  • [23]J. Abdi, A. Jamal Sisi, M. Hadipoor, and A. Khataee, “State of the art on the ultrasonic-assisted removal of environmental pollutants using metal-organic frameworks,” Journal of Hazardous Materials, 424, 127558, 2022.
  • [24]S. Moradi, S. A. Sobhgol, F. Hayati, A.A. Isari, B. Kakavandi, P. Bashardoust and B. Anvaripour, “Performance and reaction mechanism of MgO/ZnO/Graphene ternary nanocomposite in coupling with LED and ultrasound waves for the degradation of sulfamethoxazole and pharmaceutical wastewater,” Separation and Purification Technology, vol. 251, pp. 117373, 2020.
  • [25]S. D. Ayare and P. R. Gogate, “Sonophotocatalytic oxidation based treatment of phthalocyanine pigment containing industrial wastewater intensified using oxidising agents,” Separation and Purification Technology, vol. 233, pp. 115979, 2020.
  • [26]H. Wei, MdH. Rahaman, J. Zhao, D. Li and J. Zhai, “Hydrogen peroxide enhanced sonophotocatalytic degradation of acid orange 7 in aqueous solution: optimization by Box–Behnken design,” Journal of Chemical Technology and Biotechnology, vol. 96, pp. 2647-2658, 2021.
  • [27]S.G. Babu, P. Karthik, M.C. John, S.K. Lakhera, M. Ashokkumar, J. Khim and B. Neppolian, “Synergistic effect of sono-photocatalytic process for the degradation of organic pollutants using CuO-TiO2/Rgo,” Ultrasonic Sonochemistry, vol. 50, pp. 218–223, 2019.
  • [28]G. Dogdu Okcu, T. Tunacan and E. Dikmen, “Photocatalytic degradation of yellow 2G dye using titanium dioxide/ultraviolet A light through a Box–Behnken experimental design: Optimization and kinetic study,” Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, vol. 54, pp. 136-145, 2019.
  • [29]H. Chaker, N. Ameur, K. Saidi-Bendahou, M. Djennas and S. Fourmentin, “Modeling and Box-Behnken design optimization of photocatalytic parameters for efficient removal of dye by lanthanum-doped mesoporous TiO2,” Journal of Environmental Chemical Engineering, vol. 9, pp. 104584, 2021.
  • [30]F. S. Domingues, H. C. L. Geraldino, T. K. F. de Souza Freitas, C. A. de Almeida, F. F. de Figueiredo, and J. C. Garcia, “Photocatalytic degradation of real textile wastewater using carbon black-Nb2O5 composite catalyst under UV/Vis irradiation,” Environmental Technology, vol. 42, pp. 2335–2349, 2021.
  • [31]M. Kaur, A. Noonia, A. Dogra and P. Singh Thind, “Optimising the parameters affecting degradation of Cypermethrin in an aqueous solution using TiO2/H2O2 mediated UV photocatalysis: RSM-BBD, kinetics, isotherms and reusability,” International Journal of Environmental Analytical Chemistry, pp. 1-15, 2021.
  • [32]J. Wang, Z. Jiang, Z. Zhang, Y. Xie, X. Wang, Z. Xing, R. Xu, and X. Zhang, “Sonocatalytic degradation of acid red B and rhodamine B catalyzed by nano-sized ZnO powder under ultrasonic irradiation,” Ultrasonics Sonochemistry, vol. 15, pp. 768-774, 2008.
  • [33]M. Inoue, F. Okada, A. Sakurai, and M. Sakakibara, “A new development of dyestuffs degradation system using ultrasound,” Ultrasonics Sonochemistry, vol. 13, pp. 313-320, 2006.
  • [34]V. Katheresan, J. Kansedo and S.Y. Lau, “Efficiency of various recent wastewater dye removal methods: A review,” Journal of Environmental Chemical Engineering, vol. 6, pp. 4676-4697, 2018.
  • [35]S. Rahimi, B. Ayati and A. Rezaee, “Optimization of reaction parameters for the sonophotocatalytic degradation of hydroquinone,” Research on Chemical Intermediates, vol. 43, pp. 1935-1956, 2017.
  • [36]Y. He, F. Grieser and M. Ashokkumar, “Kinetics and mechanism for the sonophotocatalytic degradation of p -chlorobenzoic acid,” The Journal of Physical Chemistry A, vol. 115, pp. 6582–6588, 2011.
  • [37]S. Mosleh, M.R. Rahimi, M. Ghaedi and K. Dashtian, “Sonophotocatalytic degradation of trypan blue and vesuvine dyes in the presence of blue light active photocatalyst of Ag3PO4/Bi2S3-HKUST-1-MOF: central composite optimization and synergistic effect study,” Ultrasonic Sonochemistry, vol. 32, pp. 387–397, 2016.
  • [38]G. Asgari, A. Shabanloo, M. Salari and F. Eslami, “Sonophotocatalytic treatment of AB113 dye and real textile wastewater using ZnO/persulfate: Modeling by response surface methodology and artificial neural network,” Environmental Research, vol. 184, pp. 109367, 2020.
  • [39]I. Arslan-Alaton, G. Tureli and T. Olmez-Hanci, “Treatment of azo dye production wastewaters using photo-Fenton-like advanced oxidation processes: Optimization by response surface methodology,” Journal of Photochemistry and Photobiology A: Chemistry, vol. 202, pp. 142–153, 2009.
  • [40]M. Assassi, F. Madjene, S. Harchouche and H. Boulfiza, “Photocatalytic treatment of Crystal Violet in aqueous solution: Box–Behnken optimization and degradation mechanism,” Environmental Progress and Sustainable Energy, pp. 1-8, 2021.
  • [41]A.H. Jawad, N.N.A. Malek, A.S. Abdulhameed and R. Razuan, “Synthesis of magnetic chitosan-fly ash/Fe3O4 composite for adsorption of reactive orange 16 dye: optimization by Box–Behnken design,” Journal of Polymers and the Environment, vol. 28, pp. 1068–1082, 2020.
  • [42]B. Boutra and M. Trari, “Solar photodegradation of a textile azo dye using synthe- sized ZnO/bentonite,” Water Science and Technology, vol. 75, pp. 1211–1220, 2017.
  • [43]S. Mosleh, M.R. Rahimi, M. Ghaedi, A. Asfaram, R. Jannesar, and F. Sadeghfar, “A rapid and efficient sonophotocatalytic process for degradation of pollutants: Statistical modeling and kinetics study,” Journal of Molecular Liquids, vol. 261, pp. 291–302, 2018.
  • [42]A. Arslan, E. Topkaya, S. Veli and D. Bingöl, “Optimization of Ultrasonication Process for the Degradation of Linear Alkyl Benzene Sulfonic Acid by Response Surface Methodology,” Clean - Soil, Air, Water, vol. 46, pp. 1700508, 2018.
  • [43]Z. Zhang and H. Zheng, “Optimization for decolorization of azo dye acid green 20 by ultrasound and H2O2 using response surface methodology,” Journal of Hazardous Materials, vol. 172, pp. 1388–1393, 2009.
  • [44]N. Serpone, R. Terzian, H. Hidaka and E. Pelizzetti, “Ultrasonic induced dehalogena- tion and oxidation of 2-, 3-, and 4-chlorophenol in air-equilibrated aqueous media. Similarities with irradiated semiconductor particulates,” The Journal of Physical Chemistry A, vol. 98, pp. 2634–2640, 1994.
  • [45]S. Woislawski, “The spectrophotometric determination of ionization constants of basic dyes,” Journal of the American Chemical Society, vol. 75, pp. 5201–5203, 1953.
  • [46]O. Aguilar, C. Ángeles, C. O. Castillo, C. Martínez, R. Rodríguez, R. S. Ruiz, and M. G. Vizcarra, “On the ultrasonic degradation of Rhodamine B in water: kinetics and operational conditions effect,” Environmental Technology, vol. 35, pp. 1183–1189, 2014.
  • [47]S. Merouani, O. Hamdaoui, F. Saoudi and M. Chiha, “Sonochemical degradation of Rhodamine B in aqueous phase: Effects of additives,” Chemical Engineering Journal, vol. 158, pp. 550-557, 2010.
  • [48]D. Dimitrakopoulou, I. Rethemiotaki, Z. Frontistis, N. P. Xekoukoulotakis, D. Venieri and D. Mantzavinos, “Degradation, mineralization and antibiotic inactivation of amoxicillin by UV-A/TiO2 photocatalysis,” Journal of Environmental Management, vol. 98, pp. 168–174, 2012.
  • [49]S. Bouafia-Chergui, H. Zemmouri, M. Chabani and A. Bensmaili, “TiO2-Photocatalyzed Degradation of Tetracycline: Kinetic Study, Adsorption Isotherms, Mineralization and Toxicity Reduction,” Desalination and Water Treatment, 57, 16670–16677, 2016.
  • [50]S. J. Jafari, G. Moussavi and H. Hossaini, “Degradation and Mineralization of Diazinon Pesticide in UVC and UVC/TiO2 Process,” Desalination and Water Treatment, vol. 57, pp. 3782–3790, 2016.
  • [51]Y. L. Pang, S. Bhatia, and A. Z. Abdullah, “Process behavior of TiO2 nanotube-enhanced sonocatalytic degradation of Rhodamine B in aqueous solution,” Separation and Purification Technology, vol. 77, pp. 331–338, 2011.
  • [52]F. Madjene, M. Assassi, I. Chokri, T. Enteghar and H. Lebik, “Optimization of photocatalytic degradation of rhodamine B using Box – Behnken experimental design: Mineralization and mechanism,” Water Environment Federation, vol. 93, pp. 112-–122, 2021.
  • [53]N. Chakinala, P.R. Gogate and A.G. Chakinala, “Photocatalytic degradation of rhodamine-B over mono- & bi-metallic TiO2 catalysts,” Materials Today: Proceedings, vol. 43, pp. 3066–3070 Contents, 2021.
  • [54]Y.L. Pang, A.Z. Abdullah and S. Bhatia, “Review on sonochemical methods in the presence of catalysts and chemical additives for treatment of organic pollutants in wastewater,” Desalination, vol. 277, pp. 1–14, 2011.

TiO2 Nanokatalizörü Kullanarak Rodamin B (RhB) Boyasının Hibrit Sonofotokatalitik Renk Giderimi Optimizasyonu

Yıl 2022, Cilt: 10 Sayı: 4, 1998 - 2014, 25.10.2022

Öz

Rhodamine B (RhB) boyası, cilt, gastrointestinal ve solunum sistemleri üzerindeki çeşitli olumsuz etkileri nedeniyle bu çalışmada hedef kirletici olarak incelenmiştir. Bu çalışmada, sentetik sulu bir solüsyonda RhB boyasının sonofotokataliz (SFK) metoduyla renk giderimi, ultraviyole A (UVA) ışığı (~365 nm) altında 90 dakikada, saf, nano boyutlu bir katalizörle hibrit laboratuvar ölçekli, kesikli mod reaktör sistemi kullanılarak araştırılmıştır. Maksimum RhB renk giderimi elde etmek için, bu yöntemde TiO2 konsantrasyonu (0.5 ila 2.5 g/L), başlangıç pH'ı (2 ila 10) ve RhB konsantrasyonu (10 ila 50 mg/L) olan bağımsız parametreler seçilmiştir. Optimizasyon sürecini gerçekleştirmek için üç seviyeli Box-Behnken faktöriyel tasarımı (BBD) seçilmiştir. Bulunan sonuçlar, 0.5 g/L TiO2 konsantrasyonu, pH 2 ve 15.25 mg/L başlangıç RhB konsantrasyonun maksimum RhB renk giderimi elde etmek için optimum parametreler olduğunu göstermiştir. Ayrıca ilk defa lamba tipi, lamba elektrik gücü ve giderim verimini etkileyebilecek H2O2 ilavesi incelenmiştir. ANOVA analizine göre, model üzerinde RhB konsantrasyonu en önemli etkiye sahipken, bunu pH ve TiO2 konsantrasyonu takip etmiştir. R2 değeri 0.9902 olan model için regresyon analizi tarafından deneysel sonuçlar ile tahmin değerleri arasında iyi bir uyum elde edilmiştir. Sonuçlar, Langmuir-Hinshelwood (L-H) modelinin, kc ve KLH'ın sırasıyla 0.941 mg/Lmin ve 0.129 L/mg olduğu SFK prosesini iyi açıklayabildiğini göstermiştir.
 

Proje Numarası

2021.09.02.1498

Kaynakça

  • [1]R. Wang, M. Shi, F. Xu, Y. Qiu, P. Zhang, K. Shen, Q. Zhao, J. Yu and Y. Zhang, “Graphdiyne-modified TiO2 nanofibers with osteoinductive and enhanced photocatalytic antibacterial activities to prevent implant infection,” Nature Communications, vol. 11, pp. 4465, 2020.
  • [2]Uludağ İhracatçı Birlikleri Genel Sekreterlikleri Ar–Ge Şubesi. “Türkiye Tekstil Sektörü ve Bursa.” https://uib.org.tr/tr/kbfile/turkiye_tekstil_sektoru_ve_bursa_ocak_2020 (accessed Jan. 21, 2020).
  • [3]V. B. K. S. Mullapudi, A. Salveru and A. J. Kora, “An in-house UV-photolysis setup for the rapid degradation of both cationic and anionic dyes in dynamic mode through UV/H2O2-based advanced oxidation process,” International Journal of Environmental Analytical Chemistry, pp. 1-17, 2020.
  • [4]A. Selim, S. Kaur, A.H. Dar, S. Sartaliya and G. Jayamurugan, “Synergistic effects of carbon dots and palladium nanoparticles enhance the sonocatalytic performance for rhodamine B degradation in the absence of light,” ACS Omega, vol. 5, pp. 22603–22613, 2020.
  • [5]Y. S. Lai, P. Parameswaran, A. Li, A. Aguinaga and B. E. Rittmann, “Selective fermentation of carbohydrate and protein fractions of Scenedesmus, and biohydrogenation of its lipid fraction for enhanced recovery of saturated fatty acids,” Biotechnology and Bioengineering, vol. 113, pp. 320-329, 2016.
  • [6]T. B. T. Dao, T. T. L. Ha, T. D. Nguyen, H. N. Le, C. N. Ha-Thuc, T. M. L. Nguyen, P. Perre and D. M. Nguyen, “Effectiveness of photocatalysis of MMT-supported TiO2 and TiO2 nanotubes for rhodamine B degradation,” Chemosphere, vol. 280, pp. 130802, 2021.
  • [7]C. Lops, A. Ancona, K. Di Cesare, B. Dumontel, N. Garino, G. Canavese, S. Hérnandez and V. Cauda, “Sonophotocatalytic degradation mechanisms of Rhodamine B dye via radicals generation by micro- and nano-particles of ZnO,” Applied Catalysis B: Environmental, vol. 243, pp. 629-640, 2019.
  • [8]P. Razaghi, K. Dashtian, F. Yousefi, R. Karimi and M. Ghaedi, “Gold anchoring to CuFe2F8(H2O)2 oxyfluoride for robust sono-photodegradation of Rhodamine-B,” Journal of Cleaner Production, vol. 313, pp. 127916, 2021.
  • [9]H. Selcuk, “Decolorization and detoxification of textile wastewater by ozonation and coagulation processes,” Dyes and Pigments, vol. 64, pp. 217-222, 2005.
  • [10]S. P. Hinge, M. S. Orpe, K. V. Sathe, G. D. Tikhe, N. S. Pandey, K. N. Bawankar, M. V. Bagal, V. G. Mohod and R. Parag, “Combined removal of Rhodamine B and Rhodamine 6G from wastewater using novel treatment approaches based on ultrasonic and ultraviolet irradiations,” Desalination and Water Treatment, vol. 3994, pp. 0-13, 2016.
  • [11]P. R. Gogate, M. Sivakumar, and A. B. Pandit, “Destruction of Rhodamine B using novel sonochemical reactor with capacity of 7.5 l,” Separation and Purification Technology, vol. 34, pp. 130-24, 2004.
  • [12]E. Adamek, W. Baran, J. Ziemiańska, and A. Sobczak, “The Comparison of Photocatalytic Degradation and Decolorization Processes of Dyeing Effluents,” International Journal of Photoenergy, pp. 578191, 2013.
  • [13]D. Pratiwi, A. W. Indrianingsih, C. Darsih, and Hernawan, “Decolorization and Degradation of Batik Dye Effluent using Ganoderma lucidum,” IOP Conf. Series: Earth and Environmental Science, vol. 101, pp. 012034, 2017.
  • [14]J. A. Ayala, C. O. Castillo and R. S. Ruiz, “Ultrasonic, ultraviolet, and hybrid catalytic processes for the degradation of rhodamine B dye: Decolorization kinetics,” Revista Mexicana de Ingeniera Quimica, vol. 16, 521-529, 2017.
  • [15]K. Soutsas, V. Karayannis, I. Poulios, A. Riga, K. Ntampegliotis, X. Spiliotis, and G. Papapolymerou, “Decolorization and degradation of reactive azo dyes via heterogeneous photocatalytic processes,” Desalination, vol. 250, 345-350, 2010.
  • [16]T. Rasheed, M. Bilal, H. M. N. Iqbal, S. Z. H. Shah, H. Hu, X. Zhang, and Y. Zhou, “TiO2/UV-assisted rhodamine B degradation: putative pathway and identification of intermediates by UPLC/MS,” Environmental Technology, vol. 39, 1533–1543, 2018.
  • [17]P. Zawadzki, “Comparative studies of Rhodamine B decolorization in the combined process Na2S2O8 /visible light/ultrasound,” Desalination and Water Treatment, vol. 213, pp. 269-278, 2021.
  • [18]D. Xu and H. Ma, “Degradation of rhodamine B in water by ultrasound-assisted TiO2 photocatalysis,” Journal of Cleaner Production, vol. 313, pp. 127758, 2021.
  • [19]F. Ahmedchekkat, M.S. Medjram, M. Chiha and A.M. Ali Al-bsoul, “Sonophotocatalytic degradation of Rhodamine B using a novel reactor geometry: effect of operating conditions,” Chemical Engineering Journal, vol. 178, pp. 244–251, 2011.
  • [20]K. P. Mishra and P. R. Gogate, “Intensification of degradation of aqueous solutions of rhodamine B using sonochemical reactors at operating capacity of 7 L,” Journal of Environmental Management, vol. 92, pp. 1972-1977, 2011.
  • [21]P. Singh, A. Dhir and V. K. Sangal, “Optimization of Photocatalytic Process Parameters for the Degradation of Acrylonitrile Using Box Behnken Design,” Desalination and Water Treatment, 55, 1501–1508, 2015.
  • [22] G. E. P. Box, W. G. Hunter and J. S. Hunter, “Statics for Experiments: An Introduction to Design Data Analysis and Model Building”, Wiley: New York, 1978.
  • [23]J. Abdi, A. Jamal Sisi, M. Hadipoor, and A. Khataee, “State of the art on the ultrasonic-assisted removal of environmental pollutants using metal-organic frameworks,” Journal of Hazardous Materials, 424, 127558, 2022.
  • [24]S. Moradi, S. A. Sobhgol, F. Hayati, A.A. Isari, B. Kakavandi, P. Bashardoust and B. Anvaripour, “Performance and reaction mechanism of MgO/ZnO/Graphene ternary nanocomposite in coupling with LED and ultrasound waves for the degradation of sulfamethoxazole and pharmaceutical wastewater,” Separation and Purification Technology, vol. 251, pp. 117373, 2020.
  • [25]S. D. Ayare and P. R. Gogate, “Sonophotocatalytic oxidation based treatment of phthalocyanine pigment containing industrial wastewater intensified using oxidising agents,” Separation and Purification Technology, vol. 233, pp. 115979, 2020.
  • [26]H. Wei, MdH. Rahaman, J. Zhao, D. Li and J. Zhai, “Hydrogen peroxide enhanced sonophotocatalytic degradation of acid orange 7 in aqueous solution: optimization by Box–Behnken design,” Journal of Chemical Technology and Biotechnology, vol. 96, pp. 2647-2658, 2021.
  • [27]S.G. Babu, P. Karthik, M.C. John, S.K. Lakhera, M. Ashokkumar, J. Khim and B. Neppolian, “Synergistic effect of sono-photocatalytic process for the degradation of organic pollutants using CuO-TiO2/Rgo,” Ultrasonic Sonochemistry, vol. 50, pp. 218–223, 2019.
  • [28]G. Dogdu Okcu, T. Tunacan and E. Dikmen, “Photocatalytic degradation of yellow 2G dye using titanium dioxide/ultraviolet A light through a Box–Behnken experimental design: Optimization and kinetic study,” Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, vol. 54, pp. 136-145, 2019.
  • [29]H. Chaker, N. Ameur, K. Saidi-Bendahou, M. Djennas and S. Fourmentin, “Modeling and Box-Behnken design optimization of photocatalytic parameters for efficient removal of dye by lanthanum-doped mesoporous TiO2,” Journal of Environmental Chemical Engineering, vol. 9, pp. 104584, 2021.
  • [30]F. S. Domingues, H. C. L. Geraldino, T. K. F. de Souza Freitas, C. A. de Almeida, F. F. de Figueiredo, and J. C. Garcia, “Photocatalytic degradation of real textile wastewater using carbon black-Nb2O5 composite catalyst under UV/Vis irradiation,” Environmental Technology, vol. 42, pp. 2335–2349, 2021.
  • [31]M. Kaur, A. Noonia, A. Dogra and P. Singh Thind, “Optimising the parameters affecting degradation of Cypermethrin in an aqueous solution using TiO2/H2O2 mediated UV photocatalysis: RSM-BBD, kinetics, isotherms and reusability,” International Journal of Environmental Analytical Chemistry, pp. 1-15, 2021.
  • [32]J. Wang, Z. Jiang, Z. Zhang, Y. Xie, X. Wang, Z. Xing, R. Xu, and X. Zhang, “Sonocatalytic degradation of acid red B and rhodamine B catalyzed by nano-sized ZnO powder under ultrasonic irradiation,” Ultrasonics Sonochemistry, vol. 15, pp. 768-774, 2008.
  • [33]M. Inoue, F. Okada, A. Sakurai, and M. Sakakibara, “A new development of dyestuffs degradation system using ultrasound,” Ultrasonics Sonochemistry, vol. 13, pp. 313-320, 2006.
  • [34]V. Katheresan, J. Kansedo and S.Y. Lau, “Efficiency of various recent wastewater dye removal methods: A review,” Journal of Environmental Chemical Engineering, vol. 6, pp. 4676-4697, 2018.
  • [35]S. Rahimi, B. Ayati and A. Rezaee, “Optimization of reaction parameters for the sonophotocatalytic degradation of hydroquinone,” Research on Chemical Intermediates, vol. 43, pp. 1935-1956, 2017.
  • [36]Y. He, F. Grieser and M. Ashokkumar, “Kinetics and mechanism for the sonophotocatalytic degradation of p -chlorobenzoic acid,” The Journal of Physical Chemistry A, vol. 115, pp. 6582–6588, 2011.
  • [37]S. Mosleh, M.R. Rahimi, M. Ghaedi and K. Dashtian, “Sonophotocatalytic degradation of trypan blue and vesuvine dyes in the presence of blue light active photocatalyst of Ag3PO4/Bi2S3-HKUST-1-MOF: central composite optimization and synergistic effect study,” Ultrasonic Sonochemistry, vol. 32, pp. 387–397, 2016.
  • [38]G. Asgari, A. Shabanloo, M. Salari and F. Eslami, “Sonophotocatalytic treatment of AB113 dye and real textile wastewater using ZnO/persulfate: Modeling by response surface methodology and artificial neural network,” Environmental Research, vol. 184, pp. 109367, 2020.
  • [39]I. Arslan-Alaton, G. Tureli and T. Olmez-Hanci, “Treatment of azo dye production wastewaters using photo-Fenton-like advanced oxidation processes: Optimization by response surface methodology,” Journal of Photochemistry and Photobiology A: Chemistry, vol. 202, pp. 142–153, 2009.
  • [40]M. Assassi, F. Madjene, S. Harchouche and H. Boulfiza, “Photocatalytic treatment of Crystal Violet in aqueous solution: Box–Behnken optimization and degradation mechanism,” Environmental Progress and Sustainable Energy, pp. 1-8, 2021.
  • [41]A.H. Jawad, N.N.A. Malek, A.S. Abdulhameed and R. Razuan, “Synthesis of magnetic chitosan-fly ash/Fe3O4 composite for adsorption of reactive orange 16 dye: optimization by Box–Behnken design,” Journal of Polymers and the Environment, vol. 28, pp. 1068–1082, 2020.
  • [42]B. Boutra and M. Trari, “Solar photodegradation of a textile azo dye using synthe- sized ZnO/bentonite,” Water Science and Technology, vol. 75, pp. 1211–1220, 2017.
  • [43]S. Mosleh, M.R. Rahimi, M. Ghaedi, A. Asfaram, R. Jannesar, and F. Sadeghfar, “A rapid and efficient sonophotocatalytic process for degradation of pollutants: Statistical modeling and kinetics study,” Journal of Molecular Liquids, vol. 261, pp. 291–302, 2018.
  • [42]A. Arslan, E. Topkaya, S. Veli and D. Bingöl, “Optimization of Ultrasonication Process for the Degradation of Linear Alkyl Benzene Sulfonic Acid by Response Surface Methodology,” Clean - Soil, Air, Water, vol. 46, pp. 1700508, 2018.
  • [43]Z. Zhang and H. Zheng, “Optimization for decolorization of azo dye acid green 20 by ultrasound and H2O2 using response surface methodology,” Journal of Hazardous Materials, vol. 172, pp. 1388–1393, 2009.
  • [44]N. Serpone, R. Terzian, H. Hidaka and E. Pelizzetti, “Ultrasonic induced dehalogena- tion and oxidation of 2-, 3-, and 4-chlorophenol in air-equilibrated aqueous media. Similarities with irradiated semiconductor particulates,” The Journal of Physical Chemistry A, vol. 98, pp. 2634–2640, 1994.
  • [45]S. Woislawski, “The spectrophotometric determination of ionization constants of basic dyes,” Journal of the American Chemical Society, vol. 75, pp. 5201–5203, 1953.
  • [46]O. Aguilar, C. Ángeles, C. O. Castillo, C. Martínez, R. Rodríguez, R. S. Ruiz, and M. G. Vizcarra, “On the ultrasonic degradation of Rhodamine B in water: kinetics and operational conditions effect,” Environmental Technology, vol. 35, pp. 1183–1189, 2014.
  • [47]S. Merouani, O. Hamdaoui, F. Saoudi and M. Chiha, “Sonochemical degradation of Rhodamine B in aqueous phase: Effects of additives,” Chemical Engineering Journal, vol. 158, pp. 550-557, 2010.
  • [48]D. Dimitrakopoulou, I. Rethemiotaki, Z. Frontistis, N. P. Xekoukoulotakis, D. Venieri and D. Mantzavinos, “Degradation, mineralization and antibiotic inactivation of amoxicillin by UV-A/TiO2 photocatalysis,” Journal of Environmental Management, vol. 98, pp. 168–174, 2012.
  • [49]S. Bouafia-Chergui, H. Zemmouri, M. Chabani and A. Bensmaili, “TiO2-Photocatalyzed Degradation of Tetracycline: Kinetic Study, Adsorption Isotherms, Mineralization and Toxicity Reduction,” Desalination and Water Treatment, 57, 16670–16677, 2016.
  • [50]S. J. Jafari, G. Moussavi and H. Hossaini, “Degradation and Mineralization of Diazinon Pesticide in UVC and UVC/TiO2 Process,” Desalination and Water Treatment, vol. 57, pp. 3782–3790, 2016.
  • [51]Y. L. Pang, S. Bhatia, and A. Z. Abdullah, “Process behavior of TiO2 nanotube-enhanced sonocatalytic degradation of Rhodamine B in aqueous solution,” Separation and Purification Technology, vol. 77, pp. 331–338, 2011.
  • [52]F. Madjene, M. Assassi, I. Chokri, T. Enteghar and H. Lebik, “Optimization of photocatalytic degradation of rhodamine B using Box – Behnken experimental design: Mineralization and mechanism,” Water Environment Federation, vol. 93, pp. 112-–122, 2021.
  • [53]N. Chakinala, P.R. Gogate and A.G. Chakinala, “Photocatalytic degradation of rhodamine-B over mono- & bi-metallic TiO2 catalysts,” Materials Today: Proceedings, vol. 43, pp. 3066–3070 Contents, 2021.
  • [54]Y.L. Pang, A.Z. Abdullah and S. Bhatia, “Review on sonochemical methods in the presence of catalysts and chemical additives for treatment of organic pollutants in wastewater,” Desalination, vol. 277, pp. 1–14, 2011.
Toplam 56 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Gamze Doğdu Okçu 0000-0002-0278-8503

Proje Numarası 2021.09.02.1498
Yayımlanma Tarihi 25 Ekim 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 10 Sayı: 4

Kaynak Göster

APA Doğdu Okçu, G. (2022). Optimization of Hybrid Sonophotocatalytic Decolorization of Rhodamine B (RhB) Dye Using TiO2 Nanocatalyst. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi, 10(4), 1998-2014. https://doi.org/10.29130/dubited.1022337
AMA Doğdu Okçu G. Optimization of Hybrid Sonophotocatalytic Decolorization of Rhodamine B (RhB) Dye Using TiO2 Nanocatalyst. DÜBİTED. Ekim 2022;10(4):1998-2014. doi:10.29130/dubited.1022337
Chicago Doğdu Okçu, Gamze. “Optimization of Hybrid Sonophotocatalytic Decolorization of Rhodamine B (RhB) Dye Using TiO2 Nanocatalyst”. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi 10, sy. 4 (Ekim 2022): 1998-2014. https://doi.org/10.29130/dubited.1022337.
EndNote Doğdu Okçu G (01 Ekim 2022) Optimization of Hybrid Sonophotocatalytic Decolorization of Rhodamine B (RhB) Dye Using TiO2 Nanocatalyst. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 10 4 1998–2014.
IEEE G. Doğdu Okçu, “Optimization of Hybrid Sonophotocatalytic Decolorization of Rhodamine B (RhB) Dye Using TiO2 Nanocatalyst”, DÜBİTED, c. 10, sy. 4, ss. 1998–2014, 2022, doi: 10.29130/dubited.1022337.
ISNAD Doğdu Okçu, Gamze. “Optimization of Hybrid Sonophotocatalytic Decolorization of Rhodamine B (RhB) Dye Using TiO2 Nanocatalyst”. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 10/4 (Ekim 2022), 1998-2014. https://doi.org/10.29130/dubited.1022337.
JAMA Doğdu Okçu G. Optimization of Hybrid Sonophotocatalytic Decolorization of Rhodamine B (RhB) Dye Using TiO2 Nanocatalyst. DÜBİTED. 2022;10:1998–2014.
MLA Doğdu Okçu, Gamze. “Optimization of Hybrid Sonophotocatalytic Decolorization of Rhodamine B (RhB) Dye Using TiO2 Nanocatalyst”. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi, c. 10, sy. 4, 2022, ss. 1998-14, doi:10.29130/dubited.1022337.
Vancouver Doğdu Okçu G. Optimization of Hybrid Sonophotocatalytic Decolorization of Rhodamine B (RhB) Dye Using TiO2 Nanocatalyst. DÜBİTED. 2022;10(4):1998-2014.