Effects of Mn-site doping on the magnetocaloric properties of La0.62Bi0.05Ca0.33Mn1-xRuxO3 manganite system
Yıl 2022,
Cilt: 10 Sayı: 4, 1715 - 1724, 25.10.2022
Selda Kılıç Çetin
,
Gönül Akça
,
Ahmet Ekicibil
Öz
This study reports the effects of Ru element doping in La0.62Bi0.05Ca0.33Mn1-xRuxO3 (x=0.0, 0.1 and 0.2) manganite compounds on the magnetocaloric (MC) properties of materials obtained by solid-state method. XRD analysis showed that the samples crystallized in orthorhombic structure (with Pnma space group). The magnetic phase transition temperatures of the samples were determined from the thermomagnetic curves as 221 K for x = 0.0 sample and 215 and 206 K for x = 0.1 and x = 0.2 samples, respectively, under 100 Oe applied field. Arrott plots confirm that the type of magnetic phase transition is second-order phase transition. The -∆S_M^max values were calculated as 7.55, 3.51 and 2.69 J/kgK for x = 0.0, 0.1 and 0.2 samples, respectively. Relative cooling power (RCP) values decrease with Ru doping. It was concluded that the Ru additive had an effect on reducing the transition temperatures and magnetic entropy change values of the samples.
Destekleyen Kurum
Çukurova Üniversitesi
Proje Numarası
FBA-2019-12320
Teşekkür
This work is supported by the Research Fund of Çukurova University, Adana, Turkey, under grant contracts no: FBA-2019-12320.
Kaynakça
- [1] V. Franco, J. S. Blázquez, J. J. Ipus, J. Y. Law, L. M. Moreno-Ramírez, A. Conde, “Magnetocaloric effect: from materials research to refrigeration devices,” Prog. Mater. Sci., vol. 93, pp. 12-232, 2018.
- [2] A. M. Tishin, Y. I. Spichkin, The Magnetocaloric Effect and its Applications, 1st ed., London, UK: IOP Publishing LTD, 2003, ch. 11, pp. 351-401.
- [3] V. K. Pecharsky, K. A. Gschneidner Jr., “Advanced magnetocaloric materials: what does the future hold?,” Int. J. Refrig., vol. 29, pp. 1239–1249, 2006.
- [4] R. A. Kishore, S. Priya, “A review on design and performance of thermomagnetic devices,” Renew. Sust. Energ. Rev., vol. 81, pp. 31-44, 2018.
- [5] A. Waske, D. Dzekan, K. Sellschopp, D. Berger, A. Stork, K. Nielsch, S. Faehler, “Energy harvesting near room temperature using a thermomagnetic generator with a pretzel-like manetic flux topology,” Nat. Energy, vol. 4, pp. 68-74, 2019.
- [6] E. Brück, “Thermomagnetic generator,” Patent Application Pub. 0037342, Apr. 28, 2011.
- [7] E. Brück, “Developments in magnetocaloric refrigeration,” J. Phys. D: Appl. Phys., vol. 38, pp. R381–R391, 2005.
- [8] M. H. Phan, S. C. Yu, “Review of the magnetocaloric effect in manganite materials,” J. Magn. Magn. Mater., vol. 308, pp. 325–340, 2007.
- [9] Y. Xu, M. Meier, P. Das, M. R. Koblischka, U. Hartmann, “Perovskite manganites: potential materials for magnetic cooling at or near room temperature,” Cryst. Eng., vol. 5, pp. 383-389, 2002.
- [10] B. F. Yu, Q. Gao, B. Zhang, X. Z. Meng, Z. Chen, “Review on research of room temperature magnetic refrigeration,” Int. J. Refrig., vol. 26, pp. 622-636, 2003.
- [11] A. Kitanovski, J. Tušek, U. Tomc, U. Plaznik, M. Ožbolt, A. Poredoš, “Magnetocaloric materials for freezing, cooling, and heat-pump applications,” in Magnetocaloric Energy Conversion, 1st ed., Cham, Switzerland: Springer, 2015, ch. 2, pp. 23-37.
- [12] Z. B. Guo, Y. W. Du, J. S. Zhu, H. Huang, W. P. Ding, D. Feng, “Large Magnetic Entropy Change in Perovskite-Type Manganese Oxides,” Phys. Rev. Lett., vol. 78, pp. 1142-1145, 1997.
- [13] G. C. Lin, Q. Wei, J. X. Zhang, “Direct measurement of the magnetocaloric effect in La0.67Ca0.33MnO3,” J. Magn. Magn. Mater., vol. 300, pp. 392-396, 2006.
- [14] X. X. Zhang, J. Tejada, Y. Xin, G. F. Sun, K. W. Wong, X. Bohigas, “Magnetocaloric effect in La0.67Ca0.33MnO and La0.60Y0.07Ca0.33MnO bulk materials,” Appl. Phys., vol. 63, no. 23, pp. 3596-3598, 1996.
- [15] V. S. Kolat, H. Gencer, M. Gunes, S. Atalay, “Effect of B-doping on the structural, magnetotransport and magnetocaloric properties of La0.67Ca0.33MnO3 compounds,” Mater. Sci. Eng. B, vol. 140, pp. 212-217, 2007.
- [16] P. Nisha, S. S. Pillai, M. R. Varma, K. G. Suresh, “Influence of cobalt on the structural, magnetic and magnetocaloric properties of La0.67Ca0.33MnO3,” J. Magn. Magn. Mater., vol. 327, pp. 189-195, 2013.
- [17] Y. Regaieg, F. Ayadi, J. Monnier, S. Reguer, M. Koubaa, A. Cheikhrouhou, S. Nowak, L. Sicard, S. Ammar-Merah, “Magnetocaloric properties of La0.67Ca0.33MnO3 produced by reactive spark plasma sintering and by conventional ceramic route,” Mater. Res. Express, vol. 1, 046105, 2014.
- [18] H. Gencer, S. Atalay, H. I. Adıguzel, V. S. Kolat, “Magnetocaloric effect in the La0.62Bi0.05Ca0.33MnO3 compound,” Physica B, vol. 357, pp. 326–333, 2005.
- [19] A. O. Ayaş, S. Kılıç Çetin, M. Akyol, G. Akça, A. Ekicibil, “Effect of B site partial Ru substitution on structural magnetic and magnetocaloric properties in La0.7Pb0.3Mn1-xRuxO3 (x= 0.0, 0.1 and 0.2) perovskite system,” J. Mol. Struct., vol. 1200, 127120, 2020.
- [20] Z. Mohamed, I. S. Shahron, N. Ibrahim , M. F. Maulud, “Influence of Ruthenium Doping on the Crystal Structure and Magnetic Properties of Pr0.67Ba0.33Mn1–xRuxO3 Manganites,” Crystals, vol. 10, no. 4, 295, 2020.
- [21] M. Pektas, T. Izgi, H. Gencer, S. Atalay, V. S. Kolat, N. Bayri, “Effects of Ru substitution on the structural, magnetic and magnetocaloric properties of Pr0.68Ca0.22Sr0.1Mn1−xRuxO3 (x = 0, 0.05, 0.1 and 0.2) compounds,” J. Mater. Sci.: Mater. Electron., vol. 31, pp. 15731–15741, 2020.
- [22] A. Bhargav, M. Prajapat, D. S. Rana, S. P. Sanyal, “Magnetic Properties of Ru-Doped Nd0.67Sr0.33Mn1−xRuxO3 (0 ≤ x ≤ 0.10) Manganites,” J. Supercond. Nov. Magn., vol. 32, pp. 1991–1996, 2019.
- [23] R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. Sect. A, vol. 32, pp. 751- 767, 1976.
- [24] S. Tarhouni, A. Mleiki, I. Chaaba, H. B. Khelifa, W. Cheikhrouhou-Koubaa, M. Koubaa , A. Cheikhrouhou, E. K. Hlil, “Structural, magnetic and magnetocaloric properties of Ag-doped Pr0.5Sr0.5−xAgxMnO3 manganites (0.0 ≤ x ≤ 0.4),” Ceram. Int., vol. 43, pp. 133-143, 2017.
- [25] M. K. Verma, N. D. Sharma, N. Choudhary, S. Sharma, D. Singh, “Comparative study of La0.6R0.1Ca0.3Mn0.9Cr0.1O3 (R = La, Eu and Ho) nanoparticles: effect of A‑cation size and sintering temperature,” J. Mater. Sci. : Mater. Electron., vol. 30, pp. 12328–12338, 2019.
- [26] S. Kılıç Çetin, G. Akça, A. Ekicibil, “Impact of small Er rare earth element substitution on magnetocaloric properties of (La0.9Er0.1)0.67Pb0.33MnO3 perovskite,” J. Mol. Struct., vol. 1196, pp. 658-661, 2019.
- [27] F. Ayadi, S. Ammar, S. Nowak, W. Cheikhrouhou-Koubaa, Y. Regaieg, M. Koubaa, J. Monnier, L. Sicard, “Importance of the synthesis and sintering methods on the properties of manganite ceramics: The example of La0.7Ca0.3MnO,” J. Alloys Compd., vol. 759, pp. 52-59, 2018.
- [28] M. Oumezzine, O. Peǹa, T. Guizouarn, R. Lebullenger, M. Oumezzine, “Impact of the sintering temperature on the structural, magnetic and electrical transport properties of doped La0.67Ba0.33Mn0.9Cr0.1O3 manganite,”J. Magn. Magn. Mater., vol. 324, no. 18, pp. 2821-2828, 2012.
- [29] A. Selmi, R. M’nassri, W. Cheikhrouhou-Koubaa, N. C. Boudjada, A. Cheikhrouhou, “The effect of Co doping on the magnetic and magnetocaloric properties of Pr0.7Ca0.3Mn1-xCoxO3 manganites,” Ceram. Int., vol. 41, pp. 7723-7728, 2015.
- [30] M. Dhahri, A. Zaidi, K. Cherif, J. Dhahri, E. K. Hlil, “Effect of indium substitution on structural, magnetic and manganites magnetocaloric properties of La0.5Sm0.1Sr0.4Mn1-xInxO3 (0 ≤ x ≤ 0.1),” J. Alloys Compd., vol. 691, pp. 578-586, 2017.
- [31] C. Zener,“Interaction between the d-shells in the transition metals. II. ferromagnetic compounds of manganese with perovskite structure,” Phys. Rev., vol. 82, pp. 403-405, 1951.
- [32] R. Mahendiran, S. K. Tiwary, A. K. Raychaudhuri, T. V. Ramakrishnan, “Structure, electron-transport properties, and giant magnetoresistance of hole-doped LaMnO3 systems,” Phys. Rev. B, vol. 53, pp. 3348-3358, 1996.
- [33] V. S. Kolat, T. Izgi, A. O. Kaya, N. Bayri, H. Gencer, S. Atalay, “Metamagnetic transition and magnetocaloric effect in charge-ordered Pr0.68Ca0.32-xSrxMnO3 (x=0, 0.1, 0.18, 0.26 and 0.32) compounds,” J. Magn. Magnet. Mater., vol. 32, pp. 427-433, 2010.
- [34] B. K. Banerjee, “On a generalised approach to first and second order magnetic transitions,” Phys. Lett., vol. 12, pp. 16-17, 1964.
- [35] M. Botello-Zubiate, M. Grijalva-Castillo, D. Soto-Parra, R. Sáenz-Hernández, C. Santillán-Rodríguez, and J. Matutes-Aquino, “Preparation of La0.7Ca0.3−xSrxMnO3 manganites by four synthesis methods and their influence on the magnetic properties and relative cooling power,” Materials, vol. 12, no. 2, pp. 309, 2019.
Mn-bölgesi Katkılamanın La0.62Bi0.05Ca0.33Mn1-xRuxO3 Manganit Sisteminin Manyetokalorik Özellikleri Üzerine Etkileri
Yıl 2022,
Cilt: 10 Sayı: 4, 1715 - 1724, 25.10.2022
Selda Kılıç Çetin
,
Gönül Akça
,
Ahmet Ekicibil
Öz
Bu çalışma katıhal reaksiyon yöntemiyle elde edilen La0.62Bi0.05Ca0.33Mn1-xRuxO3 (x=0.0, 0.1 ve 0.2) manganit bileşiklerinde Ru elementi katkısının malzemelerin manyetokalorik özellikleri (MC) üzerindeki etkilerini bildirmektedir. XRD analizi, numunelerin ortorombik (Pnma uzay grubu) yapıda kristalleştiğini göstermiştir. Örneklerin manyetik faz geçiş sıcaklıkları 100 Oe uygulanan alan altında katkısız x = 0.0 örneği için 221K, x = 0.1 ve x = 0.2 örnekleri için sırasıyla 215 ve 207K olarak belirlenmiştir. Arrott eğrileri tüm örneklerin ikinci dereceden faz geçişi sergilediğini doğrulamaktadır. 5 T alan altında -∆S_M^max değerleri x = 0.0, 0.1 ve 0.2 örnekleri için sırasıyla 7.55, 3.51 ve 2.69 J/kgK olarak hesaplanmıştır. Örneklerin göreli soğutma güç (RCP) değerlerinde bir azalma gözlemlenmiştir. Ru katkısının örneklerin geçiş sıcaklık ve manyetik entropi değişim değerlerinde bir düşüş gösterdiği sonucuna ulaşılmıştır.
Proje Numarası
FBA-2019-12320
Kaynakça
- [1] V. Franco, J. S. Blázquez, J. J. Ipus, J. Y. Law, L. M. Moreno-Ramírez, A. Conde, “Magnetocaloric effect: from materials research to refrigeration devices,” Prog. Mater. Sci., vol. 93, pp. 12-232, 2018.
- [2] A. M. Tishin, Y. I. Spichkin, The Magnetocaloric Effect and its Applications, 1st ed., London, UK: IOP Publishing LTD, 2003, ch. 11, pp. 351-401.
- [3] V. K. Pecharsky, K. A. Gschneidner Jr., “Advanced magnetocaloric materials: what does the future hold?,” Int. J. Refrig., vol. 29, pp. 1239–1249, 2006.
- [4] R. A. Kishore, S. Priya, “A review on design and performance of thermomagnetic devices,” Renew. Sust. Energ. Rev., vol. 81, pp. 31-44, 2018.
- [5] A. Waske, D. Dzekan, K. Sellschopp, D. Berger, A. Stork, K. Nielsch, S. Faehler, “Energy harvesting near room temperature using a thermomagnetic generator with a pretzel-like manetic flux topology,” Nat. Energy, vol. 4, pp. 68-74, 2019.
- [6] E. Brück, “Thermomagnetic generator,” Patent Application Pub. 0037342, Apr. 28, 2011.
- [7] E. Brück, “Developments in magnetocaloric refrigeration,” J. Phys. D: Appl. Phys., vol. 38, pp. R381–R391, 2005.
- [8] M. H. Phan, S. C. Yu, “Review of the magnetocaloric effect in manganite materials,” J. Magn. Magn. Mater., vol. 308, pp. 325–340, 2007.
- [9] Y. Xu, M. Meier, P. Das, M. R. Koblischka, U. Hartmann, “Perovskite manganites: potential materials for magnetic cooling at or near room temperature,” Cryst. Eng., vol. 5, pp. 383-389, 2002.
- [10] B. F. Yu, Q. Gao, B. Zhang, X. Z. Meng, Z. Chen, “Review on research of room temperature magnetic refrigeration,” Int. J. Refrig., vol. 26, pp. 622-636, 2003.
- [11] A. Kitanovski, J. Tušek, U. Tomc, U. Plaznik, M. Ožbolt, A. Poredoš, “Magnetocaloric materials for freezing, cooling, and heat-pump applications,” in Magnetocaloric Energy Conversion, 1st ed., Cham, Switzerland: Springer, 2015, ch. 2, pp. 23-37.
- [12] Z. B. Guo, Y. W. Du, J. S. Zhu, H. Huang, W. P. Ding, D. Feng, “Large Magnetic Entropy Change in Perovskite-Type Manganese Oxides,” Phys. Rev. Lett., vol. 78, pp. 1142-1145, 1997.
- [13] G. C. Lin, Q. Wei, J. X. Zhang, “Direct measurement of the magnetocaloric effect in La0.67Ca0.33MnO3,” J. Magn. Magn. Mater., vol. 300, pp. 392-396, 2006.
- [14] X. X. Zhang, J. Tejada, Y. Xin, G. F. Sun, K. W. Wong, X. Bohigas, “Magnetocaloric effect in La0.67Ca0.33MnO and La0.60Y0.07Ca0.33MnO bulk materials,” Appl. Phys., vol. 63, no. 23, pp. 3596-3598, 1996.
- [15] V. S. Kolat, H. Gencer, M. Gunes, S. Atalay, “Effect of B-doping on the structural, magnetotransport and magnetocaloric properties of La0.67Ca0.33MnO3 compounds,” Mater. Sci. Eng. B, vol. 140, pp. 212-217, 2007.
- [16] P. Nisha, S. S. Pillai, M. R. Varma, K. G. Suresh, “Influence of cobalt on the structural, magnetic and magnetocaloric properties of La0.67Ca0.33MnO3,” J. Magn. Magn. Mater., vol. 327, pp. 189-195, 2013.
- [17] Y. Regaieg, F. Ayadi, J. Monnier, S. Reguer, M. Koubaa, A. Cheikhrouhou, S. Nowak, L. Sicard, S. Ammar-Merah, “Magnetocaloric properties of La0.67Ca0.33MnO3 produced by reactive spark plasma sintering and by conventional ceramic route,” Mater. Res. Express, vol. 1, 046105, 2014.
- [18] H. Gencer, S. Atalay, H. I. Adıguzel, V. S. Kolat, “Magnetocaloric effect in the La0.62Bi0.05Ca0.33MnO3 compound,” Physica B, vol. 357, pp. 326–333, 2005.
- [19] A. O. Ayaş, S. Kılıç Çetin, M. Akyol, G. Akça, A. Ekicibil, “Effect of B site partial Ru substitution on structural magnetic and magnetocaloric properties in La0.7Pb0.3Mn1-xRuxO3 (x= 0.0, 0.1 and 0.2) perovskite system,” J. Mol. Struct., vol. 1200, 127120, 2020.
- [20] Z. Mohamed, I. S. Shahron, N. Ibrahim , M. F. Maulud, “Influence of Ruthenium Doping on the Crystal Structure and Magnetic Properties of Pr0.67Ba0.33Mn1–xRuxO3 Manganites,” Crystals, vol. 10, no. 4, 295, 2020.
- [21] M. Pektas, T. Izgi, H. Gencer, S. Atalay, V. S. Kolat, N. Bayri, “Effects of Ru substitution on the structural, magnetic and magnetocaloric properties of Pr0.68Ca0.22Sr0.1Mn1−xRuxO3 (x = 0, 0.05, 0.1 and 0.2) compounds,” J. Mater. Sci.: Mater. Electron., vol. 31, pp. 15731–15741, 2020.
- [22] A. Bhargav, M. Prajapat, D. S. Rana, S. P. Sanyal, “Magnetic Properties of Ru-Doped Nd0.67Sr0.33Mn1−xRuxO3 (0 ≤ x ≤ 0.10) Manganites,” J. Supercond. Nov. Magn., vol. 32, pp. 1991–1996, 2019.
- [23] R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. Sect. A, vol. 32, pp. 751- 767, 1976.
- [24] S. Tarhouni, A. Mleiki, I. Chaaba, H. B. Khelifa, W. Cheikhrouhou-Koubaa, M. Koubaa , A. Cheikhrouhou, E. K. Hlil, “Structural, magnetic and magnetocaloric properties of Ag-doped Pr0.5Sr0.5−xAgxMnO3 manganites (0.0 ≤ x ≤ 0.4),” Ceram. Int., vol. 43, pp. 133-143, 2017.
- [25] M. K. Verma, N. D. Sharma, N. Choudhary, S. Sharma, D. Singh, “Comparative study of La0.6R0.1Ca0.3Mn0.9Cr0.1O3 (R = La, Eu and Ho) nanoparticles: effect of A‑cation size and sintering temperature,” J. Mater. Sci. : Mater. Electron., vol. 30, pp. 12328–12338, 2019.
- [26] S. Kılıç Çetin, G. Akça, A. Ekicibil, “Impact of small Er rare earth element substitution on magnetocaloric properties of (La0.9Er0.1)0.67Pb0.33MnO3 perovskite,” J. Mol. Struct., vol. 1196, pp. 658-661, 2019.
- [27] F. Ayadi, S. Ammar, S. Nowak, W. Cheikhrouhou-Koubaa, Y. Regaieg, M. Koubaa, J. Monnier, L. Sicard, “Importance of the synthesis and sintering methods on the properties of manganite ceramics: The example of La0.7Ca0.3MnO,” J. Alloys Compd., vol. 759, pp. 52-59, 2018.
- [28] M. Oumezzine, O. Peǹa, T. Guizouarn, R. Lebullenger, M. Oumezzine, “Impact of the sintering temperature on the structural, magnetic and electrical transport properties of doped La0.67Ba0.33Mn0.9Cr0.1O3 manganite,”J. Magn. Magn. Mater., vol. 324, no. 18, pp. 2821-2828, 2012.
- [29] A. Selmi, R. M’nassri, W. Cheikhrouhou-Koubaa, N. C. Boudjada, A. Cheikhrouhou, “The effect of Co doping on the magnetic and magnetocaloric properties of Pr0.7Ca0.3Mn1-xCoxO3 manganites,” Ceram. Int., vol. 41, pp. 7723-7728, 2015.
- [30] M. Dhahri, A. Zaidi, K. Cherif, J. Dhahri, E. K. Hlil, “Effect of indium substitution on structural, magnetic and manganites magnetocaloric properties of La0.5Sm0.1Sr0.4Mn1-xInxO3 (0 ≤ x ≤ 0.1),” J. Alloys Compd., vol. 691, pp. 578-586, 2017.
- [31] C. Zener,“Interaction between the d-shells in the transition metals. II. ferromagnetic compounds of manganese with perovskite structure,” Phys. Rev., vol. 82, pp. 403-405, 1951.
- [32] R. Mahendiran, S. K. Tiwary, A. K. Raychaudhuri, T. V. Ramakrishnan, “Structure, electron-transport properties, and giant magnetoresistance of hole-doped LaMnO3 systems,” Phys. Rev. B, vol. 53, pp. 3348-3358, 1996.
- [33] V. S. Kolat, T. Izgi, A. O. Kaya, N. Bayri, H. Gencer, S. Atalay, “Metamagnetic transition and magnetocaloric effect in charge-ordered Pr0.68Ca0.32-xSrxMnO3 (x=0, 0.1, 0.18, 0.26 and 0.32) compounds,” J. Magn. Magnet. Mater., vol. 32, pp. 427-433, 2010.
- [34] B. K. Banerjee, “On a generalised approach to first and second order magnetic transitions,” Phys. Lett., vol. 12, pp. 16-17, 1964.
- [35] M. Botello-Zubiate, M. Grijalva-Castillo, D. Soto-Parra, R. Sáenz-Hernández, C. Santillán-Rodríguez, and J. Matutes-Aquino, “Preparation of La0.7Ca0.3−xSrxMnO3 manganites by four synthesis methods and their influence on the magnetic properties and relative cooling power,” Materials, vol. 12, no. 2, pp. 309, 2019.