Araştırma Makalesi
BibTex RIS Kaynak Göster

İnsansız hava aracından çekilen videolar kullanılarak derin öğrenme yaklaşımı ile nesne tespiti

Yıl 2023, , 9 - 15, 23.03.2023
https://doi.org/10.24012/dumf.1191160

Öz

Günümüzde, İnsansız Hava Araçları(İHA) sınır güvenliği, sahil güvenliği, savunma, saldırı başta olmak üzere arama kurtarma, zirai ilaçlama, yangın söndürme gibi geniş bir kullanım alanına sahiptir. Bununla beraber İHA’nın bazı görevleri otonom bir şekilde yerine getirebilmesi ise bilgisayarlı görü sisteminin buna entegresi ile olur. Bu alandaki uygulamalarından biri olan havadan nesne tespiti uygulamaları, uzaklık, yakınlık kavramlarına bağlı olarak farklı boyutlardaki nesneleri tespit edememe, yavaş tespit, yanlış tahminleme gibi çeşitli hatalar içerebilir. Derin Öğrenme(DÖ) uygulamaları ile bu hataları en aza indrilebilir. Bu çalışmada VRAT[1] video setinden alınan görüntülerle YOLOv3 DÖ ağı eğitilmiş ve daha sonra DJI Mavic 2 Zoom İHA kamerasından elde edilen görüntülerle tekrar eğitim yapılarak videodaki araçların ve yayaların tespiti sağlanmıştır. Eğitim ve test süreci Google Colab Tesla T4 GPU makinesinde gerçekleştirilmiştir. Modelin performansı ilk ve ikinci eğitim için Loss, mAP 2.345, %79 ve 1.171, %70.09 olarak bulunmuştur.

Destekleyen Kurum

Dicle Üniversitesi DÜBAP

Proje Numarası

DÜBAP MÜHENDİSLİK.19.007

Kaynakça

  • [1] The Virat Video Dataset, 11 Jan 2012. Erişim Tarihi: 18 Mayıs 2020. https://viratdata.org/
  • [2] O. Bayraktar , F. Özdemir , Ö. Çetin ve G. Yılmaz , "İnsansız Hava Araçları İçin Otonom İniş Sistemi Simülatörü Tasarımı", lişim Teknolojileri Dergisi, c. 5, sayı. 2, ss. 1-8, Mayıs 2012.
  • [3] B. Bender, M. E. Atasoy ve F. Semiz, “Deep Learning-Based Human and Vehicle Detection in Drone Videos”, 2021 6th International Conference on Computer Science and Engineering (UBMK), (pp. 446-450), September 2021.
  • [4] Bayhan, Erdem, et al. "Deep Learning Based Object Detection and Recognition of Unmanned Aerial Vehicles." 2021 3rd International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA). IEEE, 2021.
  • [5] T. Tang, Z. Deng, S. Zhou, L. Lei ve H. Zou, “Fast vehicle detection in UAV images”, 2017 International Workshop on Remote Sensing with Intelligent Processing (RSIP), (pp. 1-5), May 2017.
  • [6] J. Lee, J. Wang, D. Crandall, S. Šabanović ve G. Fox, “Real-time, cloud-based object detection for unmanned aerial vehicles”, 2017 First IEEE International Conference on Robotic Computing (IRC), (pp. 36-43), April 2017.
  • [7] MAVIC 2 Specs - Mavic 2 Zoom, DJI, Erişim Tarihi:12 Ocak 2022. https://www.dji.com/mavic-2 ?site=brandsite & from=insite_search
  • [8] H. V. Karakuş, Darknet YOLOv3 hızlı bakış, 2020. Erişim tarihi: 23 Kasım 2021. https://medium.com/@karakus.haciveli/darknet-yolov3-ızlı-bakış-ddc9cd5582ea
  • [9] S. Dulepet, P. Maji, M. Harsh and K. Washabaugh, Deploying a Scalable Object Detection Inference Pipeline Part, 2020. Erişim Tarihi:21 ralık 2020. https://developer.nvidia.com/blog/deploying-a-scalable-object-detection-inference-pipeline/
  • [10] Y. Mesci, YOLO Algoritmasını Anlamak, 2019. Erişim tarihi: 7 Aralık 2021. https://medium.com/deep-learning-turkiye/yolo-lgoritmasını-anlamak-290f2152808f
Toplam 10 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Muhammet Ali Arserim 0000-0002-9913-5946

Ayşan Usta 0000-0002-9190-5061

Proje Numarası DÜBAP MÜHENDİSLİK.19.007
Yayımlanma Tarihi 23 Mart 2023
Gönderilme Tarihi 20 Ekim 2022
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

IEEE M. A. Arserim ve A. Usta, “İnsansız hava aracından çekilen videolar kullanılarak derin öğrenme yaklaşımı ile nesne tespiti”, DÜMF MD, c. 14, sy. 1, ss. 9–15, 2023, doi: 10.24012/dumf.1191160.
DUJE tarafından yayınlanan tüm makaleler, Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır. Bu, orijinal eser ve kaynağın uygun şekilde belirtilmesi koşuluyla, herkesin eseri kopyalamasına, yeniden dağıtmasına, yeniden düzenlemesine, iletmesine ve uyarlamasına izin verir. 24456