Araştırma Makalesi
BibTex RIS Kaynak Göster

Hepatit hastalığının tespitinde bulanık mantık ve makine öğrenmesi yöntemlerinin karşılaştırılması

Yıl 2023, , 539 - 546, 31.12.2023
https://doi.org/10.24012/dumf.1319102

Öz

Yaygın bir karaciğer rahatsızlığı olan hepatit, dünya çapında önemli halk sağlığı sorunlarından biridir. Klinik verilerin doğru yorumlanması, hepatit tanısının yapılabilmesi için ele alınması gereken en önemli sorunlardan birisidir. Bu çalışmada, ölümcül hepatit hastalığının tanısı için öznitelik seçimi yöntemi uygulanarak, bulanık modelleme ile çeşitli makine öğrenmesi yöntemlerinin hastalık tespitindeki başarısı karşılaştırılmıştır. Çalışmada UCI makine öğrenimi deposundan edinilen hepatit veri seti kullanılmıştır. Kullanılan veri seti ilk olarak veri ön işlemeden geçirilmiş, sınıflandırma başarısının artırılması için öznitelik seçimi ile veri setindeki özellik sayısı azaltılmıştır. Özellik sayısı azaltılan veri seti kullanılarak bulanık model ve makine öğrenmesi modelleri denenmiştir. Elde edilen sonuçlar çeşitli metrikler kullanılarak değerlendirilmiştir. Yapılan çalışmalar sonucunda Bulanık Mantık yöntemi ile doğruluk %94 olurken, Gradient Boosting algoritması ile doğruluk, kesinlik, duyarlılık ve f-skor metriği açısından sırasıyla %98.36, %98.68, %98.95 ve %98.91 olarak hesaplanmıştır. Elde edilen sonuçlar, hepatit hastalığının teşhisinde makine öğrenmesi yöntemlerinden Gradient Boosting yönteminin diğer makine öğrenme yöntemlerine ve bulanık yaklaşıma göre daha başarılı olduğu görülmüştür.

Kaynakça

  • [1] J. M. Ntaganda and M. Gahamanyi, “Fuzzy Logic Approach for Solving an Optimal Control Problem of an Uninfected Hepatitis B Virus Dynamics,” Applied Mathematics, vol. 06, no. 09, Art. no. 09, 2015, doi: 10.4236/am.2015.69136.
  • [2] P. A. Ejegwa and E. S. Modom, “Diagnosis of viral hepatitis using new distance measure of intuitionistic fuzzy sets,” Int J Fuzzy Math Arch, vol. 8, no. 1, pp. 1–7, 2015.
  • [3] J. F. Perz, G. L. Armstrong, L. A. Farrington, Y. J. F. Hutin, and B. P. Bell, “The contributions of hepatitis B virus and hepatitis C virus infections to cirrhosis and primary liver cancer worldwide,” Journal of Hepatology, vol. 45, no. 4, pp. 529–538, Oct. 2006, doi: 10.1016/j.jhep.2006.05.013.
  • [4] W. H. Organization, Global hepatitis report 2017. World Health Organization, 2017.
  • [5] A. Sardesai, P. Sambarey, V. Kharat, and A. Deshpande, “Fuzzy logic application in gynecology: A case study,” in 2014 International Conference on Informatics, Electronics Vision (ICIEV), May 2014, pp. 1–5. doi: 10.1109/ICIEV.2014.6850715.
  • [6] E. Dogantekin, A. Dogantekin, and D. Avci, “Automatic hepatitis diagnosis system based on Linear Discriminant Analysis and Adaptive Network based on Fuzzy Inference System,” Expert Systems with Applications, vol. 36, no. 8, pp. 11282–11286, Oct. 2009, doi: 10.1016/j.eswa.2009.03.021.
  • [7] K. Polat and S. Güneş, “Hepatitis disease diagnosis using a new hybrid system based on feature selection (FS) and artificial immune recognition system with fuzzy resource allocation,” Digital Signal Processing, vol. 16, no. 6, pp. 889–901, Nov. 2006, doi: 10.1016/j.dsp.2006.07.005.
  • [8] M. Nilashi, H. Ahmadi, L. Shahmoradi, O. Ibrahim, and E. Akbari, “A predictive method for hepatitis disease diagnosis using ensembles of neuro-fuzzy technique,” Journal of Infection and Public Health, vol. 12, no. 1, pp. 13–20, Jan. 2019, doi: 10.1016/j.jiph.2018.09.009.
  • [9] G. Ahmad, M. A. Khan, S. Abbas, A. Athar, B. S. Khan, and M. S. Aslam, “Automated Diagnosis of Hepatitis B Using Multilayer Mamdani Fuzzy Inference System,” Journal of Healthcare Engineering, vol. 2019, p. e6361318, Feb. 2019, doi: 10.1155/2019/6361318.
  • [10] W. Ahmad et al., “Intelligent hepatitis diagnosis using adaptive neuro-fuzzy inference system and information gain method,” Soft Comput, vol. 23, no. 21, pp. 10931–10938, Nov. 2019, doi: 10.1007/s00500-018-3643-6.
  • [11] M. S. Bascil and F. Temurtas, “A Study on Hepatitis Disease Diagnosis Using Multilayer Neural Network with Levenberg Marquardt Training Algorithm,” J Med Syst, vol. 35, no. 3, pp. 433–436, Jun. 2011, doi: 10.1007/s10916-009-9378-2.
  • [12] X. Liu et al., “A Hybrid Classification System for Heart Disease Diagnosis Based on the RFRS Method,” Computational and Mathematical Methods in Medicine, vol. 2017, p. e8272091, Jan. 2017, doi: 10.1155/2017/8272091.
  • [13] M. Adeli, N. Bigdeli, and K. Afshar, “New hybrid hepatitis diagnosis system based on Genetic algorithm and adaptive network fuzzy inference system,” in 2013 21st Iranian Conference on Electrical Engineering (ICEE), May 2013, pp. 1–6. doi: 10.1109/IranianCEE.2013.6599872.
  • [14] J. S. Sartakhti, M. H. Zangooei, and K. Mozafari, “Hepatitis disease diagnosis using a novel hybrid method based on support vector machine and simulated annealing (SVM-SA),” Computer Methods and Programs in Biomedicine, vol. 108, no. 2, pp. 570–579, Nov. 2012, doi: 10.1016/j.cmpb.2011.08.003.
  • [15] D. Çalişir and E. Dogantekin, “A new intelligent hepatitis diagnosis system: PCA–LSSVM,” Expert Systems with Applications, vol. 38, no. 8, pp. 10705–10708, Aug. 2011, doi: 10.1016/j.eswa.2011.01.014.
  • [16] H.-L. Chen, D.-Y. Liu, B. Yang, J. Liu, and G. Wang, “A new hybrid method based on local fisher discriminant analysis and support vector machines for hepatitis disease diagnosis,” Expert Systems with Applications, vol. 38, no. 9, pp. 11796–11803, Sep. 2011, doi: 10.1016/j.eswa.2011.03.066.
  • [17] Y. Kaya and M. Uyar, “A hybrid decision support system based on rough set and extreme learning machine for diagnosis of hepatitis disease,” Applied Soft Computing, vol. 13, no. 8, pp. 3429–3438, Aug. 2013, doi: 10.1016/j.asoc.2013.03.008.
  • [18] K. B. Nahato, K. H. Nehemiah, and A. Kannan, “Hybrid approach using fuzzy sets and extreme learning machine for classifying clinical datasets,” Informatics in Medicine Unlocked, vol. 2, pp. 1–11, Jan. 2016, doi: 10.1016/j.imu.2016.01.001.
  • [19] “UCI Machine Learning Repository: HCV data Data Set.” https://archive.ics.uci.edu/ml/datasets/HCV+data (accessed Jun. 25, 2021).
  • [20] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “SMOTE: Synthetic Minority Over-sampling Technique,” jair, vol. 16, pp. 321–357, Jun. 2002, doi: 10.1613/jair.953.
  • [21] B. Russell, “Vagueness,” The Australasian Journal of Psychology and Philosophy, vol. 1, no. 2, pp. 84–92, 1923.
  • [22] M. Black, “Vagueness: An exercise in logical analysis,” Philosophy of Science, vol. 4, no. 4, pp. 427–455, Oct. 1937, doi: 10.1086/286476.
  • [23] L. A. Zadeh, “Fuzzy sets,” Information and Control, vol. 8, no. 3, pp. 338–353, Jun. 1965, doi: 10.1016/S0019-9958(65)90241-X.
  • [24] C. Fuchs, S. Spolaor, M. S. Nobile, and U. Kaymak, “pyFUME: a Python Package for Fuzzy Model Estimation,” in 2020 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Jul. 2020, pp. 1–8. doi: 10.1109/FUZZ48607.2020.9177565.
Toplam 24 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Makine Öğrenme (Diğer), Bulanık Hesaplama
Bölüm Makaleler
Yazarlar

Cengiz Çoşkun 0000-0001-8552-1363

Emre Yüksek 0000-0002-1885-5539

Erken Görünüm Tarihi 31 Aralık 2023
Yayımlanma Tarihi 31 Aralık 2023
Gönderilme Tarihi 23 Haziran 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

IEEE C. Çoşkun ve E. Yüksek, “Hepatit hastalığının tespitinde bulanık mantık ve makine öğrenmesi yöntemlerinin karşılaştırılması”, DÜMF MD, c. 14, sy. 4, ss. 539–546, 2023, doi: 10.24012/dumf.1319102.
DUJE tarafından yayınlanan tüm makaleler, Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır. Bu, orijinal eser ve kaynağın uygun şekilde belirtilmesi koşuluyla, herkesin eseri kopyalamasına, yeniden dağıtmasına, yeniden düzenlemesine, iletmesine ve uyarlamasına izin verir. 24456