Araştırma Makalesi
BibTex RIS Kaynak Göster

Pt-Al/Grafen-KNT Nanoyapılarının Mekanik Performansı; Bir Moleküler Dinamik Simülasyonu

Yıl 2024, , 141 - 151, 29.03.2024
https://doi.org/10.24012/dumf.1386136

Öz

Metallerle karbon temelli yapıların bir araya getirilmesi ile oluşturulan hibrit nanokompozitler, malzeme bilimi ve mühendisliğinde heyecan verici bir araştırma alanı oluşturmuştur. Bu kompozitler, metallerin dayanıklılığı ile karbon bazlı yapıların hafiflik ve yüksek mukavemeti arasında bir denge sağlayarak benzersiz mekanik özelliklere sahip olurlar. Bu nedenle yeni Metal –Karbon nanoyapılarına eğilim halen devam etmektedir. Bu çalışmada, Platinyum ve alüminyum plakalar arasına yerleştirilen kovalent bağlı grafen- KNT yapılarından oluşan yeni bir Metal-Karbon nanoyapısı sunulmaktadır. Ayrıca, yapının mekanik özelliklerini ve altta yatan deformasyon mekanizmalarını araştırmak için, farklı çaplara sahip KNT (örn. KNT(6x6), KNT(8x8), KNT(10x10), KNT(12x12)) içeren numunelerin çekme ve basınç deneyleri gerçekleştirilir. Sonuçlara göre, G-KNT yapılarının Pt-Al yapısının çekme davranışını her iki doğrultuda (KNT ve Grafen) artırdığı görülmüştür. KNT doğrultusunda çekme yüklemeleri için KNT çapı azaldıkça hibrit yapıların elastik modülü ve maksimum gerilme değerleri artarken grafen doğrultusunda ise maksimum gerilme değerleri ve süneklikleri artmaktadır. Basma dayanımı açısından ise lineer bölgede genel olarak KNT çapı arttıkça dayanımın arttığı yoğunlaşma bölgesinde ise daha küçük çaplı KNT içeren yapıların daha iyi basma dayanımı sergilediği görülmüştür. Bu çalışma ile Pt-Al yapısına kıyasla daha hafif ve daha yüksek çekme dayanımına sahip bir nanoyapı sunulmuştur.

Etik Beyan

Hazırlanan makalede etik kurul izni alınmasına gerek yoktur.

Kaynakça

  • [1] A. Pujari et al., "Carbon Hybrid Materials—Design, Manufacturing, and Applications," Nanomaterials, vol. 13, no. 3, doi: 10.3390/nano13030431.
  • [2] K. Xia, H. Zhan, and Y. Gu, "Graphene and Carbon Nanotube Hybrid Structure: A Review," Procedia IUTAM, vol. 21, pp. 94-101, 2017/01/01/ 2017, doi: https://doi.org/10.1016/j.piutam.2017.03.042.
  • [3] Y. Shi et al., "Strengthening and deformation mechanisms in nanolaminated single-walled carbon nanotube-aluminum composites," Mater. Sci. Eng. A., vol. 764, p. 138273, 2019/09/09/ 2019, doi: https://doi.org/10.1016/j.msea.2019.138273.
  • [4] J. Hou, W. Du, G. Parande, M. Gupta, and S. Li, "Significantly enhancing the strength + ductility combination of Mg-9Al alloy using multi-walled carbon nanotubes," Journal of Alloys and Compounds, vol. 790, pp. 974-982, 2019/06/25/ 2019, doi: https://doi.org/10.1016/j.jallcom.2019.03.243.
  • [5] D. H. Nam, S. I. Cha, B. K. Lim, H. M. Park, D. S. Han, and S. H. Hong, "Synergistic strengthening by load transfer mechanism and grain refinement of CNT/Al–Cu composites," Carbon, vol. 50, no. 7, pp. 2417-2423, 2012/06/01/ 2012, doi: https://doi.org/10.1016/j.carbon.2012.01.058.
  • [6] M. S. L. Hudson, H. Raghubanshi, D. Pukazhselvan, and O. N. Srivastava, "Carbon nanostructures as catalyst for improving the hydrogen storage behavior of sodium aluminum hydride," International Journal of Hydrogen Energy, vol. 37, no. 3, pp. 2750-2755, 2012/02/01/ 2012, doi: https://doi.org/10.1016/j.ijhydene.2011.03.006.
  • [7] C. Soldano, A. Mahmood, and E. Dujardin, "Production, properties and potential of graphene," Carbon, vol. 48, no. 8, pp. 2127-2150, 2010/07/01/ 2010, doi: https://doi.org/10.1016/j.carbon.2010.01.058.
  • [8] Z. Zhou, X. Wang, S. Faraji, P. D. Bradford, Q. Li, and Y. Zhu, "Mechanical and electrical properties of aligned carbon nanotube/carbon matrix composites," Carbon, vol. 75, pp. 307-313, 2014/08/01/ 2014, doi: https://doi.org/10.1016/j.carbon.2014.04.008.
  • [9] U. Degirmenci and M. Kirca, "Design and mechanical characterization of a novel carbon-based hybrid foam: A molecular dynamics study," Comput. Mater. Sci., vol. 154, pp. 122-131, 2018/11/01/ 2018, doi: https://doi.org/10.1016/j.commatsci.2018.06.039.
  • [10] Z. Ozturk, C. Baykasoglu, and M. Kirca, "Sandwiched graphene-fullerene composite: A novel 3-D nanostructured material for hydrogen storage," International Journal of Hydrogen Energy, vol. 41, no. 15, pp. 6403-6411, 2016/04/27/ 2016, doi: https://doi.org/10.1016/j.ijhydene.2016.03.042.
  • [11] J. Wang, Z. Li, G. Fan, H. Pan, Z. Chen, and D. Zhang, "Reinforcement with graphene nanosheets in aluminum matrix composites," Scripta Materialia, vol. 66, no. 8, pp. 594-597, 2012/04/01/ 2012, doi: https://doi.org/10.1016/j.scriptamat.2012.01.012.
  • [12] Z. Zhao et al., "Mechanical, thermal and interfacial performances of carbon fiber reinforced composites flavored by carbon nanotube in matrix/interface," Composite Structures, vol. 159, pp. 761-772, 2017/01/01/ 2017, doi: https://doi.org/10.1016/j.compstruct.2016.10.022.
  • [13] U. Degirmenci, A. S. Erturk, M. B. Yurtalan, and M. Kirca, "Tensile behavior of nanoporous polyethylene reinforced with carbon-based nanostructures," Comput. Mater. Sci., vol. 186, p. 109971, 2021/01/01/ 2021, doi: https://doi.org/10.1016/j.commatsci.2020.109971.
  • [14] E. Coşkun, E. A. Zaragoza-Contreras, and H. J. Salavagione, "Synthesis of sulfonated graphene/polyaniline composites with improved electroactivity," Carbon, vol. 50, no. 6, pp. 2235-2243, 2012/05/01/ 2012, doi: https://doi.org/10.1016/j.carbon.2012.01.041.
  • [15] Y. Zhang et al., "Load transfer of graphene/carbon nanotube/polyethylene hybrid nanocomposite by molecular dynamics simulation," Composites Part B: Engineering, vol. 63, pp. 27-33, 2014/07/01/ 2014, doi: https://doi.org/10.1016/j.compositesb.2014.03.009.
  • [16] J. Y. Wu, J. Y. He, and Z. L. Zhang, "Fracture and negative Poisson’s ratio of novel spanned-fullerenes nanotube networks under tension," Comput. Mater. Sci., vol. 80, pp. 15-26, 2013/12/01/ 2013, doi: https://doi.org/10.1016/j.commatsci.2013.04.033.
  • [17] A. G. Nasibulin et al., "A novel hybrid carbon material," Nature Nanotechnology, vol. 2, no. 3, pp. 156-161, 2007/03/01 2007, doi: 10.1038/nnano.2007.37.
  • [18] M. Kirca, X. Yang, and A. C. To, "A stochastic algorithm for modeling heat welded random carbon nanotube network," Computer Methods in Applied Mechanics and Engineering, vol. 259, pp. 1-9, 2013/06/01/ 2013, doi: https://doi.org/10.1016/j.cma.2013.02.014.
  • [19] D. Chakravarty et al., "3D Porous Graphene by Low-Temperature Plasma Welding for Bone Implants," Advanced Materials, https://doi.org/10.1002/adma.201603146 vol. 28, no. 40, pp. 8959-8967, 2016/10/01 2016, doi: https://doi.org/10.1002/adma.201603146.
  • [20] A. T. Celebi, M. Kirca, C. Baykasoglu, A. Mugan, and A. C. To, "Tensile behavior of heat welded CNT network structures," Comput. Mater. Sci., vol. 88, pp. 14-21, 2014/06/01/ 2014, doi: https://doi.org/10.1016/j.commatsci.2014.02.040.
  • [21] Z. Fan et al., "Thermal and electrical properties of graphene/carbon nanotube aerogels," Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 445, pp. 48-53, 2014/03/20/ 2014, doi: https://doi.org/10.1016/j.colsurfa.2013.12.083.
  • [22] L. Xu, N. Wei, Y. Zheng, Z. Fan, H.-Q. Wang, and J.-C. Zheng, "Graphene-nanotube 3D networks: intriguing thermal and mechanical properties," Journal of Materials Chemistry, 10.1039/C1JM13799A vol. 22, no. 4, pp. 1435-1444, 2012, doi: 10.1039/C1JM13799A.
  • [23] G. K. Dimitrakakis, E. Tylianakis, and G. E. Froudakis, "Pillared Graphene: A New 3-D Network Nanostructure for Enhanced Hydrogen Storage," Nano Letters, vol. 8, no. 10, pp. 3166-3170, 2008/10/08 2008, doi: 10.1021/nl801417w.
  • [24] M. Kirca, "Design and analysis of sandwiched fullerene-graphene composites using molecular dynamics simulations," Composites Part B: Engineering, vol. 79, pp. 513-520, 2015/09/15/ 2015, doi: https://doi.org/10.1016/j.compositesb.2015.04.050.
  • [25] U. Degirmenci and M. Kirca, "Carbon-based nano lattice hybrid structures: Mechanical and thermal properties," Physica E Low Dimens. Syst. Nanostruct., vol. 144, p. 115392, 2022/10/01/ 2022, doi: https://doi.org/10.1016/j.physe.2022.115392.
  • [26] S. Pal, P. N. Babu, B. S. K. Gargeya, and C. S. Becquart, "Molecular Dynamics simulation based investigation of possible enhancement in strength and ductility of nanocrystalline aluminum by CNT reinforcement," Mater. Chem. Phys., vol. 243, p. 122593, 2020/03/01/ 2020, doi: https://doi.org/10.1016/j.matchemphys.2019.122593.
  • [27] D. M. Park, J. H. Kim, S. J. Lee, and G. H. Yoon, "Analysis of geometrical characteristics of CNT-Al composite using molecular dynamics and the modified rule of mixture (MROM)," Journal of Mechanical Science and Technology, vol. 32, no. 12, pp. 5845-5853, 2018/12/01 2018, doi: 10.1007/s12206-018-1133-5.
  • [28] S. E. Shin, H. J. Choi, J. H. Shin, and D. H. Bae, "Strengthening behavior of few-layered graphene/aluminum composites," Carbon, vol. 82, pp. 143-151, 2015/02/01/ 2015, doi: https://doi.org/10.1016/j.carbon.2014.10.044.
  • [29] K. Choi, J. Seo, D. Bae, and H. Choi, "Mechanical properties of aluminum-based nanocomposite reinforced with fullerenes," T. NONFERR. METAL SOC., vol. 24, pp. s47-s52, 2014/07/01/ 2014, doi: https://doi.org/10.1016/S1003-6326(14)63287-8.
  • [30] F. A. Yunusov, T. V. Larionova, E. V. Bobrynina, T. J. Ma, and O. V. Tolochko, "Aluminum-based composite reinforced with fullerene soot," Mater. Today: Proc., vol. 30, pp. 640-644, 2020/01/01/ 2020, doi: https://doi.org/10.1016/j.matpr.2020.01.449.
  • [31] A. S. Erturk, Y. O. Yildiz, and M. Kirca, "Mechanical behavior of a novel carbon-based nanostructured aluminum material," Comput. Mater. Sci., vol. 144, pp. 193-209, 2018/03/01/ 2018, doi: https://doi.org/10.1016/j.commatsci.2017.12.033.
  • [32] W. Humphrey, A. Dalke, and K. Schulten, "VMD: Visual molecular dynamics," Journal of Molecular Graphics, vol. 14, no. 1, pp. 33-38, 1996/02/01/ 1996, doi: https://doi.org/10.1016/0263-7855(96)00018-5.
  • [33] J. F. Shackelford and W. Alexander, CRC materials science and engineering handbook. CRC press, 2000.
  • [34] F. Y. Meng, S. Q. Shi, D. S. Xu, and R. Yang, "Size effect of X-shaped carbon nanotube junctions," Carbon, vol. 44, no. 7, pp. 1263-1266, 2006/06/01/ 2006, doi: https://doi.org/10.1016/j.carbon.2005.10.049.
  • [35] S. Plimpton, "Fast Parallel Algorithms for Short-Range Molecular Dynamics," Journal of Computational Physics, vol. 117, no. 1, pp. 1-19, 1995/03/01/ 1995, doi: https://doi.org/10.1006/jcph.1995.1039.
  • [36] X. Yang, F. Qiao, X. Zhu, P. Zhang, D. Chen, and A. C. To, "Coalescence of parallel finite length single-walled carbon nanotubes by heat treatment," J. Phys. Chem. Solids, vol. 74, no. 3, pp. 436-440, 2013/03/01/ 2013, doi: https://doi.org/10.1016/j.jpcs.2012.11.006.
  • [37] M. Höhnerbach and P. Bientinesi, "Accelerating AIREBO: Navigating the Journey from Legacy to High-Performance Code," Journal of Computational Chemistry, vol. 40, no. 14, pp. 1471-1482, 2019/05/30 2019, doi: https://doi.org/10.1002/jcc.25796.
  • [38] B. H. Morrow and A. Striolo, "Morphology and Diffusion Mechanism of Platinum Nanoparticles on Carbon Nanotube Bundles," The Journal of Physical Chemistry C, vol. 111, no. 48, pp. 17905-17913, 2007/12/01 2007, doi: 10.1021/jp071474o.
  • [39] Y.-H. Lin, T.-C. Chen, P.-F. Yang, S.-R. Jian, and Y.-S. Lai, "Atomic-level simulations of nanoindentation-induced phase transformation in mono-crystalline silicon," Applied Surface Science, vol. 254, no. 5, pp. 1415-1422, 2007/12/30/ 2007, doi: https://doi.org/10.1016/j.apsusc.2007.06.071.
  • [40] S. E. Shin and D. H. Bae, "Deformation behavior of aluminum alloy matrix composites reinforced with few-layer graphene," Composites Part A: Applied Science and Manufacturing, vol. 78, pp. 42-47, 2015/11/01/ 2015, doi: https://doi.org/10.1016/j.compositesa.2015.08.001

Mechanical Performance of Pt-Al/Graphene-CNT Nanostructures; A Molecular Dynamics Simulation

Yıl 2024, , 141 - 151, 29.03.2024
https://doi.org/10.24012/dumf.1386136

Öz

Hybrid nanocomposites, created by combining metals and carbon-based structures, have created an exciting field of research in materials science and engineering. These nanocomposites have unique mechanical properties, providing a balance between the durability of metals and the lightness and high strength of carbon-based structures. Therefore, the trend towards new metal–carbon nanostructures is still ongoing. In this study, a new metal-carbon nanostructure consisting of covalently bonded graphene-CNT structures placed between platinum and aluminum plates is presented. Additionally, to investigate the mechanical properties and deformation mechanisms of the structure, tensile and compression tests are carried out on samples containing CNTs with different diameters (e.g. CNT(6x6), CNT(8x8), CNT(10x10), CNT(12x12)). According to the results, it was observed that G-CNT structures increased the tensile behavior of the Pt-Al structure in both directions (CNT and Graphene). As the CNT diameter decreases for tensile loading in the CNT direction, the elastic modulus and maximum stress values of the hybrid structures increase, while in the graphene direction, the maximum stress values and ductility increase. In terms of compressive strength, it has been observed that in the linear region, as the CNT diameter increases, the strength generally increases, and in the densification region, structures containing smaller diameter CNTs exhibit better compressive strength. With this study, a nanostructure that is lighter and has higher tensile strength compared to the Pt-Al structure has been presented.

Kaynakça

  • [1] A. Pujari et al., "Carbon Hybrid Materials—Design, Manufacturing, and Applications," Nanomaterials, vol. 13, no. 3, doi: 10.3390/nano13030431.
  • [2] K. Xia, H. Zhan, and Y. Gu, "Graphene and Carbon Nanotube Hybrid Structure: A Review," Procedia IUTAM, vol. 21, pp. 94-101, 2017/01/01/ 2017, doi: https://doi.org/10.1016/j.piutam.2017.03.042.
  • [3] Y. Shi et al., "Strengthening and deformation mechanisms in nanolaminated single-walled carbon nanotube-aluminum composites," Mater. Sci. Eng. A., vol. 764, p. 138273, 2019/09/09/ 2019, doi: https://doi.org/10.1016/j.msea.2019.138273.
  • [4] J. Hou, W. Du, G. Parande, M. Gupta, and S. Li, "Significantly enhancing the strength + ductility combination of Mg-9Al alloy using multi-walled carbon nanotubes," Journal of Alloys and Compounds, vol. 790, pp. 974-982, 2019/06/25/ 2019, doi: https://doi.org/10.1016/j.jallcom.2019.03.243.
  • [5] D. H. Nam, S. I. Cha, B. K. Lim, H. M. Park, D. S. Han, and S. H. Hong, "Synergistic strengthening by load transfer mechanism and grain refinement of CNT/Al–Cu composites," Carbon, vol. 50, no. 7, pp. 2417-2423, 2012/06/01/ 2012, doi: https://doi.org/10.1016/j.carbon.2012.01.058.
  • [6] M. S. L. Hudson, H. Raghubanshi, D. Pukazhselvan, and O. N. Srivastava, "Carbon nanostructures as catalyst for improving the hydrogen storage behavior of sodium aluminum hydride," International Journal of Hydrogen Energy, vol. 37, no. 3, pp. 2750-2755, 2012/02/01/ 2012, doi: https://doi.org/10.1016/j.ijhydene.2011.03.006.
  • [7] C. Soldano, A. Mahmood, and E. Dujardin, "Production, properties and potential of graphene," Carbon, vol. 48, no. 8, pp. 2127-2150, 2010/07/01/ 2010, doi: https://doi.org/10.1016/j.carbon.2010.01.058.
  • [8] Z. Zhou, X. Wang, S. Faraji, P. D. Bradford, Q. Li, and Y. Zhu, "Mechanical and electrical properties of aligned carbon nanotube/carbon matrix composites," Carbon, vol. 75, pp. 307-313, 2014/08/01/ 2014, doi: https://doi.org/10.1016/j.carbon.2014.04.008.
  • [9] U. Degirmenci and M. Kirca, "Design and mechanical characterization of a novel carbon-based hybrid foam: A molecular dynamics study," Comput. Mater. Sci., vol. 154, pp. 122-131, 2018/11/01/ 2018, doi: https://doi.org/10.1016/j.commatsci.2018.06.039.
  • [10] Z. Ozturk, C. Baykasoglu, and M. Kirca, "Sandwiched graphene-fullerene composite: A novel 3-D nanostructured material for hydrogen storage," International Journal of Hydrogen Energy, vol. 41, no. 15, pp. 6403-6411, 2016/04/27/ 2016, doi: https://doi.org/10.1016/j.ijhydene.2016.03.042.
  • [11] J. Wang, Z. Li, G. Fan, H. Pan, Z. Chen, and D. Zhang, "Reinforcement with graphene nanosheets in aluminum matrix composites," Scripta Materialia, vol. 66, no. 8, pp. 594-597, 2012/04/01/ 2012, doi: https://doi.org/10.1016/j.scriptamat.2012.01.012.
  • [12] Z. Zhao et al., "Mechanical, thermal and interfacial performances of carbon fiber reinforced composites flavored by carbon nanotube in matrix/interface," Composite Structures, vol. 159, pp. 761-772, 2017/01/01/ 2017, doi: https://doi.org/10.1016/j.compstruct.2016.10.022.
  • [13] U. Degirmenci, A. S. Erturk, M. B. Yurtalan, and M. Kirca, "Tensile behavior of nanoporous polyethylene reinforced with carbon-based nanostructures," Comput. Mater. Sci., vol. 186, p. 109971, 2021/01/01/ 2021, doi: https://doi.org/10.1016/j.commatsci.2020.109971.
  • [14] E. Coşkun, E. A. Zaragoza-Contreras, and H. J. Salavagione, "Synthesis of sulfonated graphene/polyaniline composites with improved electroactivity," Carbon, vol. 50, no. 6, pp. 2235-2243, 2012/05/01/ 2012, doi: https://doi.org/10.1016/j.carbon.2012.01.041.
  • [15] Y. Zhang et al., "Load transfer of graphene/carbon nanotube/polyethylene hybrid nanocomposite by molecular dynamics simulation," Composites Part B: Engineering, vol. 63, pp. 27-33, 2014/07/01/ 2014, doi: https://doi.org/10.1016/j.compositesb.2014.03.009.
  • [16] J. Y. Wu, J. Y. He, and Z. L. Zhang, "Fracture and negative Poisson’s ratio of novel spanned-fullerenes nanotube networks under tension," Comput. Mater. Sci., vol. 80, pp. 15-26, 2013/12/01/ 2013, doi: https://doi.org/10.1016/j.commatsci.2013.04.033.
  • [17] A. G. Nasibulin et al., "A novel hybrid carbon material," Nature Nanotechnology, vol. 2, no. 3, pp. 156-161, 2007/03/01 2007, doi: 10.1038/nnano.2007.37.
  • [18] M. Kirca, X. Yang, and A. C. To, "A stochastic algorithm for modeling heat welded random carbon nanotube network," Computer Methods in Applied Mechanics and Engineering, vol. 259, pp. 1-9, 2013/06/01/ 2013, doi: https://doi.org/10.1016/j.cma.2013.02.014.
  • [19] D. Chakravarty et al., "3D Porous Graphene by Low-Temperature Plasma Welding for Bone Implants," Advanced Materials, https://doi.org/10.1002/adma.201603146 vol. 28, no. 40, pp. 8959-8967, 2016/10/01 2016, doi: https://doi.org/10.1002/adma.201603146.
  • [20] A. T. Celebi, M. Kirca, C. Baykasoglu, A. Mugan, and A. C. To, "Tensile behavior of heat welded CNT network structures," Comput. Mater. Sci., vol. 88, pp. 14-21, 2014/06/01/ 2014, doi: https://doi.org/10.1016/j.commatsci.2014.02.040.
  • [21] Z. Fan et al., "Thermal and electrical properties of graphene/carbon nanotube aerogels," Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 445, pp. 48-53, 2014/03/20/ 2014, doi: https://doi.org/10.1016/j.colsurfa.2013.12.083.
  • [22] L. Xu, N. Wei, Y. Zheng, Z. Fan, H.-Q. Wang, and J.-C. Zheng, "Graphene-nanotube 3D networks: intriguing thermal and mechanical properties," Journal of Materials Chemistry, 10.1039/C1JM13799A vol. 22, no. 4, pp. 1435-1444, 2012, doi: 10.1039/C1JM13799A.
  • [23] G. K. Dimitrakakis, E. Tylianakis, and G. E. Froudakis, "Pillared Graphene: A New 3-D Network Nanostructure for Enhanced Hydrogen Storage," Nano Letters, vol. 8, no. 10, pp. 3166-3170, 2008/10/08 2008, doi: 10.1021/nl801417w.
  • [24] M. Kirca, "Design and analysis of sandwiched fullerene-graphene composites using molecular dynamics simulations," Composites Part B: Engineering, vol. 79, pp. 513-520, 2015/09/15/ 2015, doi: https://doi.org/10.1016/j.compositesb.2015.04.050.
  • [25] U. Degirmenci and M. Kirca, "Carbon-based nano lattice hybrid structures: Mechanical and thermal properties," Physica E Low Dimens. Syst. Nanostruct., vol. 144, p. 115392, 2022/10/01/ 2022, doi: https://doi.org/10.1016/j.physe.2022.115392.
  • [26] S. Pal, P. N. Babu, B. S. K. Gargeya, and C. S. Becquart, "Molecular Dynamics simulation based investigation of possible enhancement in strength and ductility of nanocrystalline aluminum by CNT reinforcement," Mater. Chem. Phys., vol. 243, p. 122593, 2020/03/01/ 2020, doi: https://doi.org/10.1016/j.matchemphys.2019.122593.
  • [27] D. M. Park, J. H. Kim, S. J. Lee, and G. H. Yoon, "Analysis of geometrical characteristics of CNT-Al composite using molecular dynamics and the modified rule of mixture (MROM)," Journal of Mechanical Science and Technology, vol. 32, no. 12, pp. 5845-5853, 2018/12/01 2018, doi: 10.1007/s12206-018-1133-5.
  • [28] S. E. Shin, H. J. Choi, J. H. Shin, and D. H. Bae, "Strengthening behavior of few-layered graphene/aluminum composites," Carbon, vol. 82, pp. 143-151, 2015/02/01/ 2015, doi: https://doi.org/10.1016/j.carbon.2014.10.044.
  • [29] K. Choi, J. Seo, D. Bae, and H. Choi, "Mechanical properties of aluminum-based nanocomposite reinforced with fullerenes," T. NONFERR. METAL SOC., vol. 24, pp. s47-s52, 2014/07/01/ 2014, doi: https://doi.org/10.1016/S1003-6326(14)63287-8.
  • [30] F. A. Yunusov, T. V. Larionova, E. V. Bobrynina, T. J. Ma, and O. V. Tolochko, "Aluminum-based composite reinforced with fullerene soot," Mater. Today: Proc., vol. 30, pp. 640-644, 2020/01/01/ 2020, doi: https://doi.org/10.1016/j.matpr.2020.01.449.
  • [31] A. S. Erturk, Y. O. Yildiz, and M. Kirca, "Mechanical behavior of a novel carbon-based nanostructured aluminum material," Comput. Mater. Sci., vol. 144, pp. 193-209, 2018/03/01/ 2018, doi: https://doi.org/10.1016/j.commatsci.2017.12.033.
  • [32] W. Humphrey, A. Dalke, and K. Schulten, "VMD: Visual molecular dynamics," Journal of Molecular Graphics, vol. 14, no. 1, pp. 33-38, 1996/02/01/ 1996, doi: https://doi.org/10.1016/0263-7855(96)00018-5.
  • [33] J. F. Shackelford and W. Alexander, CRC materials science and engineering handbook. CRC press, 2000.
  • [34] F. Y. Meng, S. Q. Shi, D. S. Xu, and R. Yang, "Size effect of X-shaped carbon nanotube junctions," Carbon, vol. 44, no. 7, pp. 1263-1266, 2006/06/01/ 2006, doi: https://doi.org/10.1016/j.carbon.2005.10.049.
  • [35] S. Plimpton, "Fast Parallel Algorithms for Short-Range Molecular Dynamics," Journal of Computational Physics, vol. 117, no. 1, pp. 1-19, 1995/03/01/ 1995, doi: https://doi.org/10.1006/jcph.1995.1039.
  • [36] X. Yang, F. Qiao, X. Zhu, P. Zhang, D. Chen, and A. C. To, "Coalescence of parallel finite length single-walled carbon nanotubes by heat treatment," J. Phys. Chem. Solids, vol. 74, no. 3, pp. 436-440, 2013/03/01/ 2013, doi: https://doi.org/10.1016/j.jpcs.2012.11.006.
  • [37] M. Höhnerbach and P. Bientinesi, "Accelerating AIREBO: Navigating the Journey from Legacy to High-Performance Code," Journal of Computational Chemistry, vol. 40, no. 14, pp. 1471-1482, 2019/05/30 2019, doi: https://doi.org/10.1002/jcc.25796.
  • [38] B. H. Morrow and A. Striolo, "Morphology and Diffusion Mechanism of Platinum Nanoparticles on Carbon Nanotube Bundles," The Journal of Physical Chemistry C, vol. 111, no. 48, pp. 17905-17913, 2007/12/01 2007, doi: 10.1021/jp071474o.
  • [39] Y.-H. Lin, T.-C. Chen, P.-F. Yang, S.-R. Jian, and Y.-S. Lai, "Atomic-level simulations of nanoindentation-induced phase transformation in mono-crystalline silicon," Applied Surface Science, vol. 254, no. 5, pp. 1415-1422, 2007/12/30/ 2007, doi: https://doi.org/10.1016/j.apsusc.2007.06.071.
  • [40] S. E. Shin and D. H. Bae, "Deformation behavior of aluminum alloy matrix composites reinforced with few-layer graphene," Composites Part A: Applied Science and Manufacturing, vol. 78, pp. 42-47, 2015/11/01/ 2015, doi: https://doi.org/10.1016/j.compositesa.2015.08.001
Toplam 40 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Katı Mekanik, Sayısal Modelleme ve Mekanik Karakterizasyon
Bölüm Makaleler
Yazarlar

Ünal Değirmenci 0000-0003-1480-2488

Erken Görünüm Tarihi 29 Mart 2024
Yayımlanma Tarihi 29 Mart 2024
Gönderilme Tarihi 4 Kasım 2023
Kabul Tarihi 27 Kasım 2023
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

IEEE Ü. Değirmenci, “Pt-Al/Grafen-KNT Nanoyapılarının Mekanik Performansı; Bir Moleküler Dinamik Simülasyonu”, DÜMF MD, c. 15, sy. 1, ss. 141–151, 2024, doi: 10.24012/dumf.1386136.
DUJE tarafından yayınlanan tüm makaleler, Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır. Bu, orijinal eser ve kaynağın uygun şekilde belirtilmesi koşuluyla, herkesin eseri kopyalamasına, yeniden dağıtmasına, yeniden düzenlemesine, iletmesine ve uyarlamasına izin verir. 24456