Araştırma Makalesi
BibTex RIS Kaynak Göster

Çift-yönlü dokuma kumaş takviyeli kompozit levhalarda mekanik özelliklerin anizotropiye bağlı değişimi ve optimum laminasyon tasarımı önerisi

Yıl 2024, , 633 - 640, 30.09.2024
https://doi.org/10.24012/dumf.1467637

Öz

Bu çalışmanın ilk amacı, çift-yönlü dokuma kumaş takviyeli kompozit levhalarda mekanik özelliklerin anizotropiye bağlı değişimini incelemektir. Diğer amaç ise kompozit levha üretiminde mekanik özelliklere ve anizotropiye dayalı optimum laminasyon tasarımını (istifleme sırası) belirlemede kullanılabilecek grafiksel bir yöntemi açıklamaktır. Bu amaçlar için gerekli levhaların imalatında reçine transfer kalıplama yönteminden yararlanılmıştır. Matris ve fiber malzeme olarak sırasıyla, düşük viskoziteli ticari bir polyester reçine ile dört farklı alansal ağırlığa sahip çift-yönlü düz cam-dokuma kumaşlar kullanılmıştır. Her bir levhada kullanılan fiber ağırlığı 750 g ve levhanın merkezinden geçen orta-düzleme göre simetrik olmak şartıyla on farklı laminasyon tasarımı denenmiştir. İmalat prosesi sonunda kalıptan 50 × 50 cm boyutlarında farklı katman sayısı, farklı kalınlık ve fiber hacimlerine sahip olan kompozit levhalar elde edilmiştir. Levhalardan 0°, 15°, 30° ve 45° yönlerinde standartlara uygun numuneler kesilerek, bunların çekme ve eğilme gibi mekanik özellikleri test edilmiştir. Ayrıca, her bir levhanın laminasyon tasarımı ve fiber oryantasyonuna bağlı olarak mekanik anizotropi faktörleri hesaplanmıştır. Toplam 365 adet numune test edilmiş ve veriler SPSS-24 yazılımıyla istatistik olarak analiz edilmiştir. Mekanik özelliklerin tahmini için fiber hacmi, katman sayısı, levha kalınlığı ve fiber oryantasyonu gibi değişkenlere bağlı olarak regresyon denklemleri elde edilmiştir. Bütün çekme, eğilme mukavemeti ve modül verileri MS-Excel’e taşınarak radar (spider) grafikleri çizilmiş ve bu grafikler okunarak optimum laminasyon tasarımları önerilmiştir.

Etik Beyan

Çalışma ve makalenin tüm süreçlerinin araştırma ve yayın etiğine uygun olduğunu, etik kurallara ve bilimsel ilkelere uyduğumu beyan ederim.

Destekleyen Kurum

Balıkesir Üniversitesi

Teşekkür

Katkılarından dolayı, makine mühendisi Yakup Daban’a teşekkürler.

Kaynakça

  • [1] S. Basavarajappa, K. V. Arun and J. P. Davim, "Effect of filler materials on dry sliding wear behavior of polymer matrix composites–a Taguchi approach," J. Miner. Mater. Char. Eng., vol. 8, no. 05, pp. 79-391, May. 2009. Doi: 10.4236/jmmce.2009.85034.
  • [2] Y. Rostamiyan, H. Youseftabar and R. Azadi, "Experimental study on the effect of nano zirconia on mechanical strength and microstructure of damaged epoxy-nanocomposites," Mater. Res. Express, vol. 6, no. 2, Nov. 2018. Doi: 10.1088/2053-1591/aaef67.
  • [3] R. Azadi and Y. Rostamiyan, "Experimental and analytical study of buckling strength of new quaternary hybrid nanocomposite using Taguchi method for optimization," Constr. Build. Mater., vol. 88, no. 0, pp. 212-224, May. 2015. Doi: 10.1016/j.conbuildmat.2015.04.018.
  • [4] Y. Rostamiyan and M. Rezaei, "The effect of nano Zirconium dioxide and drilling on the buckling strength of epoxy based nanocomposites," Mater. Chem. Phys., vol. 212, no., pp. 523-532, 2018. Doi: 10.1016/j.matchemphys.2018.03.018.
  • [5] G. Gao and Y. Li, "Mechanical properties of woven glass fiber-reinforced polymer composites," Emerging Mater. Res., vol. 5, no. 2, pp. 201-208, Dec. 2016. Doi: doi.org/10.1680/jemmr.16.00018.
  • [6] D. K. Rajak, D. D. Pagar, P. L. Menezes and E. Linul, "Fiber-reinforced polymer composites: Manufacturing, properties, and applications," Polymers, vol. 11, no. 10, pp. 1667-1704, Oct. 2019. Doi: doi.org/10.3390/polym11101667.
  • [7] A. Diniță, R. G. Ripeanu, C. N. Ilincă, D. Cursaru, D. Matei, R. I. Naim, M. Tănase and A. I. Portoacă, "Advancements in Fiber-Reinforced Polymer Composites: A Comprehensive Analysis," Polymers, vol. 16, no. 1, pp. 2-50, Dec. 2023. Doi: doi.org/10.3390/polym16010002.
  • [8] M. A. Karim, M. Z. Abdullah, A. F. Deifalla, M. Azab and A. Waqar, "An assessment of the processing parameters and application of fibre-reinforced polymers (FRPs) in the petroleum and natural gas industries: A review," Results Eng., vol. 18, no. 101091, pp. 1-20, June 2023. Doi: doi.org/10.1016/j.rineng.2023.101091.
  • [9] W. Zhang and K. E. Evans, "Numerical prediction of the mechanical properties of anisotropic composite materials," Comput. Struct., vol. 29, no. 3, pp. 413-422, Feb. 1988. Doi: doi.org/10.1016/0045-7949(88)90394-X.
  • [10] J. K. Oleiwi, E. S. Al-Hassani and A. A. Mohammed, "Experimental Investigation and Mathematical Modeling of Tensile Properties of Unsaturated Polyester Reinforced by Woven Glass Fibers," Eng. Tech. J., vol. 32, no. 3 Part (A) Engineering, pp. 653-666, March 2014. Doi: doi.org/10.30684/etj.32.3A.8.
  • [11] R. Sakin, "Layup design optimization for e-glass woven roving fabric reinforced polyester composite laminates produced by VARTM," Fibers Polym., vol. 22, no. 2, pp. 509-527, Jan. 2021. Doi: doi.org/10.1007/s12221-021-0087-x.
  • [12] R. Sakin, "Effects of glass-mat on mechanical anisotropy in bidirectional e-glass woven roving reinforced composite sheets produced by RTM method," Pamukkale Univ. J. Eng. Sci., vol. 23, no. 8, pp. 967-973, 2017. Doi: 10.5505/pajes.2017.55631.
  • [13] A. R. M. Rao and N. Arvind, "Optimal stacking sequence design of laminate composite structures using tabu embedded simulated annealing," Structural Engineering and Mechanics, vol. 25, no. 2, pp. 239-268, Jan. 2007. Doi: doi.org/10.12989/sem.2007.25.2.239.
  • [14] Y. Mohammed, M. K. Hassan, A. El-Ainin H and A. Hashem, "Effect of stacking sequence and geometric scaling on the brittleness number of glass fiber composite laminate with stress raiser," Science and Engineering of Composite Materials, vol. 21, no. 2, pp. 281-288, Aug. 2014. Doi: doi.org/10.1515/secm-2013-0038.
  • [15] H. Norouzi and Y. Rostamiyan, "Experimental and numerical study of flatwise compression behavior of carbon fiber composite sandwich panels with new lattice cores," Constr. Build. Mater., vol. 100, no., pp. 22-30, Dec. 2015. Doi: 10.1016/j.conbuildmat.2015.09.046.
  • [16] Z. Jing, X. Fan and Q. Sun, "Stacking sequence optimization of composite laminates for maximum buckling load using permutation search algorithm," Compos. Struct., vol. 121, no., pp. 225-236, March 2015. Doi: 10.1016/j.compstruct.2014.10.031.
  • [17] P. Mandal, D. K. Jesthi, D. Das, A. K. Rout and R. K. Nayak, "Three-body abrasion wear performance of glass/carbon fiber reinforced polymer hybrid composites," Mater. Today-Proc., vol. 5, no. 9, pp. 20777-20784, 2018. Doi: 10.1016/j.matpr.2018.09.046.
  • [18] A. Nayak, D. K. Jesthi, B. C. Routara, D. Das and R. K. Nayak, "Tribological properties of glass/carbon hybrid composites through inter-ply arrangement using Response Surface Methodology," Mater. Today-Proc., vol. 5, no. 9, pp. 19828-19835, 2018.
  • [19] S. Swarup Mohanty, A. Kumar Rout, D. Kumar Jesthi, B. Chandra Routara and R. Kumar Nayak, "Evaluation of mechanical and wear performance of glass/carbon fiber reinforced polymer hybrid composite," Mater. Today-Proc., vol. 5, no. 9, pp. 19854-19861, 2018. Doi: 10.1016/j.matpr.2018.06.350.
  • [20] D. K. Jesthi, P. Mandal, A. K. Rout and R. K. Nayak, "Enhancement of mechanical and specific wear properties of glass/carbon fiber reinforced polymer hybrid composite," Procedia Manuf., vol. 20, no., pp. 536-541, 2018. Doi: doi.org/10.1016/j.promfg.2018.02.080.
  • [21] D. K. Jesthi, A. Nayak, B. C. Routara and R. K. Nayak, "Evaluation of Mechanical and Tribological Properties of Glass/Carbon Fiber Reinforced Polymer Hybrid Composite," Int. J. Eng., vol. 31, no. 7, July 2018. Doi: 10.5829/ije.2018.31.07a.12.
  • [22] Siddhartha and K. Gupta, "Mechanical and abrasive wear characterization of bidirectional and chopped E-glass fiber reinforced composite materials," Mater. Design., vol. 35, no., pp. 467-479, March 2012. Doi: 10.1016/j.matdes.2011.09.010.
  • [23] S. Mullaikodi, K. Shanmugasundaram, V. S. Rao and S. Rengarajan, "Synthesis, characterization and machinability studies on thin hybrid composites with SiC nano particles," Mater. Res. Express, vol. 6, no. 6, pp. 065321, March 2019. Doi: doi.org/10.1088/2053-1591/ab0ddc.
  • [24] A. Todoroki and M. Sasai, "Stacking sequence optimizations using GA with zoomed response surface on lamination parameters," Adv. Compos. Mater., vol. 11, no. 3, pp. 299-318, July 2002. Doi: 10.1163/156855102762506335.
  • [25] A. Todoroki, K. Suenaga and Y. Shimamura, "Stacking sequence optimizations using modified global response surface in lamination parameters," Adv. Compos. Mater., vol. 12, no. 1, pp. 35-55, Apr. 2003. Doi: 10.1163/156855103322320365.
  • [26] EN-ISO-527-4, Plastics - Determination of tensile properties - Part 4: Test conditions for isotropic and orthotropic fibre-reinforced plastic composites, CH-1214 Vernier, Geneva, Switzerland, 2021.
  • [27] ASTM-D7264/D7264M, Standard Test Method for Flexural Properties of Polymer Matrix Composite Materials, Pennsylvania 19428-2959, USA, 2007.
  • [28] B. N. Cox and G. Flanagan, Handbook of analytical methods for textile composites, NASA Contractor Report 4750, NASA Langley Research Center, Hampton, Virginia, USA. [Online]. Available: https://ntrs.nasa.gov/api/citations/19970017583/downloads/19970017583.pdf. 1997.
  • [29] Z. Xu and A. Yokoyama, "Influence of the Woven Structure on the Initial Fracture Behavior of Roving Glass Fabric Reinforced Composites," Open J. Compos. Mater., vol. 08, no. 02, pp. 54-67, 2018. Doi: 10.4236/ojcm.2018.82005.
  • [30] J. R. Landis and G. G. Koch, "The measurement of observer agreement for categorical data," Biometrics, no., pp. 159-174, 1977.
  • [31] USA-Deptpartment-of-Defense, Composite Materials Handbook. Materials, Usage, Design, and Analysis. Vol. 3 of 5. CRC Press, New York, 1997. http://assist.daps.dla.mil.
  • [32] T. Seshaiah and V. K. Reddy, "Effect of fiber orientation on the mechanical behavior of e-glass fibre reinforced epoxy composite materials," Int. J. Mech. Prod. Eng. Res. Dev., vol. 8, no. 8, pp. 379-396, 2018. Doi: doi.org/10.5505/pajes.2017.55631.
  • [33] N. Kumar and A. Singh, "Study the effect of fiber orientation on mechanical properties of bidirectional basalt fiber reinforced epoxy composites," Mater. Today-Proc., vol. 39, no., pp. 1581-1587, 2021. Doi: doi.org/10.1016/j.matpr.2020.05.707.
  • [34] M. T. A. Ansari, K. Singh and M. S. Azam. Effect of stacking sequence and fiber volume fraction on the static mechanical properties of woven GFRP Composite. in Trends in Materials Engineering: Lecture Notes on Multidisciplinary Industrial Engineering. 2019. Springer Nature Singapore Pte Ltd. pp. 51-58.
  • [35] G. Ntourmas, F. Glock, S. Deinert, F. Daoud, G. Schuhmacher, D. Chronopoulos, E. Özcan and J. Ninić, "Stacking sequence optimisation of an aircraft wing skin," Struct. Multidiscip. Optim., vol. 66, no. 2, pp. 31, Jan. 2023. Doi: doi.org/10.1007/s00158-022-03483-8.
  • [36] Y. Hu, G. Han, F. Cheng and X. Hu, "Thickness effect on flexural strengths of laminar carbon fibre composites," Thin-Walled Struct., vol. 186, no., pp. 110690, May 2023. Doi: doi.org/10.1016/j.tws.2023.110690.
  • [37] W. Sun, Y. Luo and H. Sun, "Experimental studies on the elastic properties of carbon fiber reinforced polymer composites prefabricated of unidirectional carbon fiber fabrics and a modified rule of mixtures in the parallel direction," Adv. Compos. Lett., vol. 27, no. 1, pp. 34-43, Jan. 2018. Doi: doi.org/10.1177/09636935180270.
  • [38] Q. Zuo, C. Wang, L. Lin, Y. Li, B. Wang, B. Miao and G. Pan, "Layup optimization of ramie fabric reinforced composite: woven fabric and lamination parameters," Ind. Crop. Prod., vol. 198, no., pp. 116712, Aug. 2023. Doi: doi.org/10.1016/j.indcrop.2023.116712.

Variation in mechanical properties with anisotropy and proposal for optimal design of lamination in bidirectional woven fabric reinforced composite sheets

Yıl 2024, , 633 - 640, 30.09.2024
https://doi.org/10.24012/dumf.1467637

Öz

The first aim of this study is to investigate the variation in the mechanical properties with the anisotropy of bidirectional woven fabric-reinforced composite sheets. The other aim is to describe a graphical method that can be used to determine the optimum lamination design (stacking sequences) based on the mechanical properties and anisotropy in composite sheet production. The resin transfer molding method was used to manufacture the plates required for these purposes. Composite sheets were fabricated using low-viscosity commercial polyester resin as the matrix and bidirectional woven glass fabrics with four different areal weights as the fibers. It was tested ten different lamination designs, which were symmetric about the mid-plane, and the total fiber weight of the sheets was 750 g. Composite sheets of dimensions 50 × 50 cm with different numbers of layers, thicknesses, and fiber volumes were produced at the end of the process. Standard specimens were cut from the sheets in the 0°, 15°, 30°, and 45° directions, and their mechanical properties, such as tensile and flexural properties, were tested. In addition, the mechanical anisotropy factors were calculated for each sheet, depending on the lamination design and fiber orientation. SPSS-24 software was used to statistically analyze the data from a total of 365 specimens. Regression equations were obtained to predict the mechanical properties based on variables such as fiber volume, number of layers, sheet thickness, and fiber orientation. All tensile, flexural, and modulus data were transferred to MS Excel, and spider graphs were drawn. The optimum lamination designs were suggested by reading these graphs.

Kaynakça

  • [1] S. Basavarajappa, K. V. Arun and J. P. Davim, "Effect of filler materials on dry sliding wear behavior of polymer matrix composites–a Taguchi approach," J. Miner. Mater. Char. Eng., vol. 8, no. 05, pp. 79-391, May. 2009. Doi: 10.4236/jmmce.2009.85034.
  • [2] Y. Rostamiyan, H. Youseftabar and R. Azadi, "Experimental study on the effect of nano zirconia on mechanical strength and microstructure of damaged epoxy-nanocomposites," Mater. Res. Express, vol. 6, no. 2, Nov. 2018. Doi: 10.1088/2053-1591/aaef67.
  • [3] R. Azadi and Y. Rostamiyan, "Experimental and analytical study of buckling strength of new quaternary hybrid nanocomposite using Taguchi method for optimization," Constr. Build. Mater., vol. 88, no. 0, pp. 212-224, May. 2015. Doi: 10.1016/j.conbuildmat.2015.04.018.
  • [4] Y. Rostamiyan and M. Rezaei, "The effect of nano Zirconium dioxide and drilling on the buckling strength of epoxy based nanocomposites," Mater. Chem. Phys., vol. 212, no., pp. 523-532, 2018. Doi: 10.1016/j.matchemphys.2018.03.018.
  • [5] G. Gao and Y. Li, "Mechanical properties of woven glass fiber-reinforced polymer composites," Emerging Mater. Res., vol. 5, no. 2, pp. 201-208, Dec. 2016. Doi: doi.org/10.1680/jemmr.16.00018.
  • [6] D. K. Rajak, D. D. Pagar, P. L. Menezes and E. Linul, "Fiber-reinforced polymer composites: Manufacturing, properties, and applications," Polymers, vol. 11, no. 10, pp. 1667-1704, Oct. 2019. Doi: doi.org/10.3390/polym11101667.
  • [7] A. Diniță, R. G. Ripeanu, C. N. Ilincă, D. Cursaru, D. Matei, R. I. Naim, M. Tănase and A. I. Portoacă, "Advancements in Fiber-Reinforced Polymer Composites: A Comprehensive Analysis," Polymers, vol. 16, no. 1, pp. 2-50, Dec. 2023. Doi: doi.org/10.3390/polym16010002.
  • [8] M. A. Karim, M. Z. Abdullah, A. F. Deifalla, M. Azab and A. Waqar, "An assessment of the processing parameters and application of fibre-reinforced polymers (FRPs) in the petroleum and natural gas industries: A review," Results Eng., vol. 18, no. 101091, pp. 1-20, June 2023. Doi: doi.org/10.1016/j.rineng.2023.101091.
  • [9] W. Zhang and K. E. Evans, "Numerical prediction of the mechanical properties of anisotropic composite materials," Comput. Struct., vol. 29, no. 3, pp. 413-422, Feb. 1988. Doi: doi.org/10.1016/0045-7949(88)90394-X.
  • [10] J. K. Oleiwi, E. S. Al-Hassani and A. A. Mohammed, "Experimental Investigation and Mathematical Modeling of Tensile Properties of Unsaturated Polyester Reinforced by Woven Glass Fibers," Eng. Tech. J., vol. 32, no. 3 Part (A) Engineering, pp. 653-666, March 2014. Doi: doi.org/10.30684/etj.32.3A.8.
  • [11] R. Sakin, "Layup design optimization for e-glass woven roving fabric reinforced polyester composite laminates produced by VARTM," Fibers Polym., vol. 22, no. 2, pp. 509-527, Jan. 2021. Doi: doi.org/10.1007/s12221-021-0087-x.
  • [12] R. Sakin, "Effects of glass-mat on mechanical anisotropy in bidirectional e-glass woven roving reinforced composite sheets produced by RTM method," Pamukkale Univ. J. Eng. Sci., vol. 23, no. 8, pp. 967-973, 2017. Doi: 10.5505/pajes.2017.55631.
  • [13] A. R. M. Rao and N. Arvind, "Optimal stacking sequence design of laminate composite structures using tabu embedded simulated annealing," Structural Engineering and Mechanics, vol. 25, no. 2, pp. 239-268, Jan. 2007. Doi: doi.org/10.12989/sem.2007.25.2.239.
  • [14] Y. Mohammed, M. K. Hassan, A. El-Ainin H and A. Hashem, "Effect of stacking sequence and geometric scaling on the brittleness number of glass fiber composite laminate with stress raiser," Science and Engineering of Composite Materials, vol. 21, no. 2, pp. 281-288, Aug. 2014. Doi: doi.org/10.1515/secm-2013-0038.
  • [15] H. Norouzi and Y. Rostamiyan, "Experimental and numerical study of flatwise compression behavior of carbon fiber composite sandwich panels with new lattice cores," Constr. Build. Mater., vol. 100, no., pp. 22-30, Dec. 2015. Doi: 10.1016/j.conbuildmat.2015.09.046.
  • [16] Z. Jing, X. Fan and Q. Sun, "Stacking sequence optimization of composite laminates for maximum buckling load using permutation search algorithm," Compos. Struct., vol. 121, no., pp. 225-236, March 2015. Doi: 10.1016/j.compstruct.2014.10.031.
  • [17] P. Mandal, D. K. Jesthi, D. Das, A. K. Rout and R. K. Nayak, "Three-body abrasion wear performance of glass/carbon fiber reinforced polymer hybrid composites," Mater. Today-Proc., vol. 5, no. 9, pp. 20777-20784, 2018. Doi: 10.1016/j.matpr.2018.09.046.
  • [18] A. Nayak, D. K. Jesthi, B. C. Routara, D. Das and R. K. Nayak, "Tribological properties of glass/carbon hybrid composites through inter-ply arrangement using Response Surface Methodology," Mater. Today-Proc., vol. 5, no. 9, pp. 19828-19835, 2018.
  • [19] S. Swarup Mohanty, A. Kumar Rout, D. Kumar Jesthi, B. Chandra Routara and R. Kumar Nayak, "Evaluation of mechanical and wear performance of glass/carbon fiber reinforced polymer hybrid composite," Mater. Today-Proc., vol. 5, no. 9, pp. 19854-19861, 2018. Doi: 10.1016/j.matpr.2018.06.350.
  • [20] D. K. Jesthi, P. Mandal, A. K. Rout and R. K. Nayak, "Enhancement of mechanical and specific wear properties of glass/carbon fiber reinforced polymer hybrid composite," Procedia Manuf., vol. 20, no., pp. 536-541, 2018. Doi: doi.org/10.1016/j.promfg.2018.02.080.
  • [21] D. K. Jesthi, A. Nayak, B. C. Routara and R. K. Nayak, "Evaluation of Mechanical and Tribological Properties of Glass/Carbon Fiber Reinforced Polymer Hybrid Composite," Int. J. Eng., vol. 31, no. 7, July 2018. Doi: 10.5829/ije.2018.31.07a.12.
  • [22] Siddhartha and K. Gupta, "Mechanical and abrasive wear characterization of bidirectional and chopped E-glass fiber reinforced composite materials," Mater. Design., vol. 35, no., pp. 467-479, March 2012. Doi: 10.1016/j.matdes.2011.09.010.
  • [23] S. Mullaikodi, K. Shanmugasundaram, V. S. Rao and S. Rengarajan, "Synthesis, characterization and machinability studies on thin hybrid composites with SiC nano particles," Mater. Res. Express, vol. 6, no. 6, pp. 065321, March 2019. Doi: doi.org/10.1088/2053-1591/ab0ddc.
  • [24] A. Todoroki and M. Sasai, "Stacking sequence optimizations using GA with zoomed response surface on lamination parameters," Adv. Compos. Mater., vol. 11, no. 3, pp. 299-318, July 2002. Doi: 10.1163/156855102762506335.
  • [25] A. Todoroki, K. Suenaga and Y. Shimamura, "Stacking sequence optimizations using modified global response surface in lamination parameters," Adv. Compos. Mater., vol. 12, no. 1, pp. 35-55, Apr. 2003. Doi: 10.1163/156855103322320365.
  • [26] EN-ISO-527-4, Plastics - Determination of tensile properties - Part 4: Test conditions for isotropic and orthotropic fibre-reinforced plastic composites, CH-1214 Vernier, Geneva, Switzerland, 2021.
  • [27] ASTM-D7264/D7264M, Standard Test Method for Flexural Properties of Polymer Matrix Composite Materials, Pennsylvania 19428-2959, USA, 2007.
  • [28] B. N. Cox and G. Flanagan, Handbook of analytical methods for textile composites, NASA Contractor Report 4750, NASA Langley Research Center, Hampton, Virginia, USA. [Online]. Available: https://ntrs.nasa.gov/api/citations/19970017583/downloads/19970017583.pdf. 1997.
  • [29] Z. Xu and A. Yokoyama, "Influence of the Woven Structure on the Initial Fracture Behavior of Roving Glass Fabric Reinforced Composites," Open J. Compos. Mater., vol. 08, no. 02, pp. 54-67, 2018. Doi: 10.4236/ojcm.2018.82005.
  • [30] J. R. Landis and G. G. Koch, "The measurement of observer agreement for categorical data," Biometrics, no., pp. 159-174, 1977.
  • [31] USA-Deptpartment-of-Defense, Composite Materials Handbook. Materials, Usage, Design, and Analysis. Vol. 3 of 5. CRC Press, New York, 1997. http://assist.daps.dla.mil.
  • [32] T. Seshaiah and V. K. Reddy, "Effect of fiber orientation on the mechanical behavior of e-glass fibre reinforced epoxy composite materials," Int. J. Mech. Prod. Eng. Res. Dev., vol. 8, no. 8, pp. 379-396, 2018. Doi: doi.org/10.5505/pajes.2017.55631.
  • [33] N. Kumar and A. Singh, "Study the effect of fiber orientation on mechanical properties of bidirectional basalt fiber reinforced epoxy composites," Mater. Today-Proc., vol. 39, no., pp. 1581-1587, 2021. Doi: doi.org/10.1016/j.matpr.2020.05.707.
  • [34] M. T. A. Ansari, K. Singh and M. S. Azam. Effect of stacking sequence and fiber volume fraction on the static mechanical properties of woven GFRP Composite. in Trends in Materials Engineering: Lecture Notes on Multidisciplinary Industrial Engineering. 2019. Springer Nature Singapore Pte Ltd. pp. 51-58.
  • [35] G. Ntourmas, F. Glock, S. Deinert, F. Daoud, G. Schuhmacher, D. Chronopoulos, E. Özcan and J. Ninić, "Stacking sequence optimisation of an aircraft wing skin," Struct. Multidiscip. Optim., vol. 66, no. 2, pp. 31, Jan. 2023. Doi: doi.org/10.1007/s00158-022-03483-8.
  • [36] Y. Hu, G. Han, F. Cheng and X. Hu, "Thickness effect on flexural strengths of laminar carbon fibre composites," Thin-Walled Struct., vol. 186, no., pp. 110690, May 2023. Doi: doi.org/10.1016/j.tws.2023.110690.
  • [37] W. Sun, Y. Luo and H. Sun, "Experimental studies on the elastic properties of carbon fiber reinforced polymer composites prefabricated of unidirectional carbon fiber fabrics and a modified rule of mixtures in the parallel direction," Adv. Compos. Lett., vol. 27, no. 1, pp. 34-43, Jan. 2018. Doi: doi.org/10.1177/09636935180270.
  • [38] Q. Zuo, C. Wang, L. Lin, Y. Li, B. Wang, B. Miao and G. Pan, "Layup optimization of ramie fabric reinforced composite: woven fabric and lamination parameters," Ind. Crop. Prod., vol. 198, no., pp. 116712, Aug. 2023. Doi: doi.org/10.1016/j.indcrop.2023.116712.
Toplam 38 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Kompozit ve Hibrit Malzemeler
Bölüm Makaleler
Yazarlar

Raif Sakin 0000-0001-6009-9573

Erken Görünüm Tarihi 30 Eylül 2024
Yayımlanma Tarihi 30 Eylül 2024
Gönderilme Tarihi 12 Nisan 2024
Kabul Tarihi 11 Temmuz 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

IEEE R. Sakin, “Çift-yönlü dokuma kumaş takviyeli kompozit levhalarda mekanik özelliklerin anizotropiye bağlı değişimi ve optimum laminasyon tasarımı önerisi”, DÜMF MD, c. 15, sy. 3, ss. 633–640, 2024, doi: 10.24012/dumf.1467637.
DUJE tarafından yayınlanan tüm makaleler, Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır. Bu, orijinal eser ve kaynağın uygun şekilde belirtilmesi koşuluyla, herkesin eseri kopyalamasına, yeniden dağıtmasına, yeniden düzenlemesine, iletmesine ve uyarlamasına izin verir. 24456