Araştırma Makalesi
BibTex RIS Kaynak Göster

Yapı-Zemin Etkileşiminin Tarihi Yığma Minarelerin Deprem Davranışına Etkisi

Yıl 2020, , 825 - 838, 15.06.2020
https://doi.org/10.24012/dumf.626894

Öz

Yapı zemin etkileşimi yapıların deprem etkileri altındaki davranışlarının doğru olarak belirlenmesinde önemli rol oynamaktadır. Geleneksel tasarım çalışmalarında yapının tabandan ankastre olduğu kabulü sıklıkla kullanılmakta ve yapı-zemin etkileşimi dikkate alınmamaktadır. Bununla birlikte, özellikle esnek zemin ortamlarında bulunan tarihi yığma yapılarda deprem yer hareketleri yapı davranışını önemli derecede etkileyebilmektedir. Bu çalışmada, tarihi yığma bir minarenin esnek ve ankastre mesnetlenme durumları için deprem davranışları, yatay ve yatay+düşey yer hareket bileşenleri için araştırılmaktadır. Çalışmada, kayma dalgası hızları sırasıyla 1000, 270 ve 90 m/s olan üç farklı zemin türü kullanılmıştır. Üç boyutlu sonlu eleman modelinin oluşturulmasında minarede tetrahedral, zemin ortamında hexahedral sonlu ve sonsuz elemanlar kullanılmıştır. Oluşturulan sonlu eleman modeli, Operasyonel Modal Analiz Yöntemi deneysel sonuçlarına göre kalibre edilmiştir. Kalibre edilen sonlu eleman modeli kullanılarak minare-zemin etkileşim sisteminin yatay, yatay+düşey yer hareketleri altında lineer deprem davranışları, farlı zemin ve ankastre mesnetlenme durumları için elde edilerek karşılaştırılmıştır. 

Kaynakça

  • ABAQUS V10 (2010). Dassault systèmes simulia corp., Providence, Rhode Island, USA.
  • ARTeMIS Modal Pro 3.0. (2014). http://www.svibs.com.
  • Bayraktar, A., Türker, T., Sevim, B., Altunışık, A.ve Yıldırım, F. (2009). Modal parameter identification of hagia sophia bell tower via ambient vibration test, Journal of Nondestructive Evaluation, 28, 1, 37-47.
  • Bayraktar, A., Altunışık, A.C., Sevim, B. ve Türker, T. (2011). Seismic Response of a historical masonry minaret using a finite element model updated with operational modal testing, Journal of Vibration and Control, 17, 1, 129-149.
  • Bayraktar, A., Altunışık, A.C. ve Muvafık, M. (2014). Damages of minarets during erciş and Edremit earthquakes, 2011 in Turkey, Smart Structures and Systems, 14, 3, 479-499.
  • Bayraktar, A., Hökelekli, E., Halifeoğlu, F.M., Mosallam, A. ve Karadeniz, H (2018). Verticalstrong ground motion effects on seismic damage propagations of historical masonry rectangularminarets, Engineering Failure Analysis, 91, 115- 128.
  • Bartoli, G., Betti, M., Marra A.M. ve Monchetti, S. (2017). Semiempirical formulations for estimatingthe main frequency of slender masonry towers, Journal of Performance of Constructed Facilities, 31, 4, 1–10.
  • Casolo, S. ve Uva, G. (2013). Non-linear dynamic analysis of masonry towers under natural accelerograms accounting for soil-structure interaction, 4th International Conference onComputational Methods in Structural Dynamics and Earthquake Engineering, Kos Island, Greece.
  • Casolo, S., Diana, V. ve Uva, G. (2017). Influence of Soil deformability on the seismic response of amasonry tower, Bulletin of Earthquake Engineering, 15, 5, 1991–2014.
  • Ceroni, F., Sica, S., Garofano, A. ve Pecce, M. (2014). Evaluation of the natural vibration frequencies of a historical masonry building accounting for SSI, Soil Dynamics and EarthquakeEngineering, 64, 95-101.
  • D’Ambrisi, A., Mariani, V. ve Mezzi, M. (2012). Seismic assessment of a historical masonry towerwith non-linear static and dynamic analyses tuned on ambient vibration tests, Engineering Structures, 36, 210-219.
  • Diaferio, M., Foti, D., Gentile, C., Giannoccaro, N.I. ve Saisi, A. (2015). Dynamic testing of a historical slender building using accelerometers and radar, Proc. of the 6th International Operational Modal Analysis Conference, Gijón, Spain,153, 129-130.
  • Diaferio, M., Foti, D. ve Giannoccaro, N.I. (2016). Modal Parameters ıdentification on environmentaltests of an ancient tower and validation of its FE model, International Journal of Mechanics, 10, 80-89.
  • Erdoğan, Y.S., Kocatürk, T. ve Demir, C. (2017). Investigation of the seismic behavior of a historical masonry minaret considering the ınteraction with surrounding structures, Journal of Earthquake Engineering, 23, 1, 112-140.
  • Erdil, B., Tapan, M., Akkaya, İ. ve Korkut, F. (2018). Effects of structural parameters on seismicbehaviour of historical masonry minaret, Periodica Polytechnica Civil Engineering, 62, 1, 148–161.
  • Eurocode 6, (1996). European committee for standardization, Brussels, Belgium. Foti, D., Diaferio, M., Giannoccaro, N.I. ve Ivorra, S. (2016). Structural identification and numerical Models for slender historical structures, In: P. Asteris & V. Plevris (Eds.), Handbook of Research on Seismic Assessment and Rehabilitation of Historic Structures, Chapter 23, 674-703.
  • Gentile, C. ve Saisi, A (2007). ambient vibration testing of historic masonry towers for structuralidentification and damage assessment, Construction and Building Materials, 21, 6, 1311-1321.
  • Hacıefendioğlu, K. ve Maraş, E.E. (2016). Photogrammetry in documentation and ambient Vibration test of historical masonry minarets, Experimental Techniques, 40, 527-1537.
  • Hejazi, M., Moayedian, S. ve Daei, M. (2016). Structural Analysis of persian historical brickmasonry minarets, Journal of Performance of Constructed Facilities, 30, 2, 210-219.
  • Kocatürk, T. ve Erdoǧan, Y.S. (2016). Earthquake behavior of m1 minaret of historical Sultan Ahmed Mosque (Blue Mosque), Structural Engineering and Mechanics, 59, 3, 539-558.
  • Kramer, S.L. (1999). Geotechnical earthquake engineering (university of Washington).
  • Livaoğlu, R., Baştürk, M.H., Doğangün, A. ve Serhatoğlu, C. (2016). Effect of geometric propertieson dynamic behavior of historic masonry minaret, KSCE Journal of Civil Engineering, 20,6, 2392-2402.
  • Lourenco, P.B. (2001). Assessment of the stability conditions of cistercian cloister, 2nd InternationalCongress on Studies in Ancient Structure.
  • Minghini, F., Milaniı, G. ve Tralli, A. (2014). Seismic risk assessment of a 50 m high masonrychimney using advanced analysis techniques, Engineering Structures, 69, 255-270.
  • Milani, G., Casolo, S., Naliato, A. ve Tralli, A. (2012). Seismic assessment of a medieval masonrytower in northern ıtaly by limit, nonlinear static, and full dynamic analyses, International Journal of Architectural Heritage: Conservation, Analysis, and Restoration, 37-41.
  • Mortezaei, A., Kheyroddin, A. ve Ronagh, H.R. (2012). Finite element analysis and seismic rehabilitation of a 1000-year-old heritage listed tall masonry mosque, Structural Design of Tall and Special Buildings, 21, 334-353.
  • Mortezaei, A. ve Motaghi, A. (2016). Seismic Assessment of the world's tallest pure-brick towerıncluding soil-structure ınteraction, Journal of Performance of Constructed Facilities, 30, 5.
  • Nohutçu, H., Demir, A., Ercan, E., Altıntaş, G. ve Hökelekli, E. (2015). Investigation of a historical masonry structure by numerical and operational modal analyses, The Structural Design of Tall andSpecial Buildings, 24, 13, 821-834.
  • Nohutçu, H., Hökelekli, E., Ercan, E., Demir, A. ve Altıntaş, G. (2017). Collapse mechanism estimation of a historical slender minaret, Structural Engineering And Mechanics, 64, 5, 653-660.
  • Oliveira, C.S., Çaktı, E., Stengel, D. ve Branco, M. (2012). Minaret Behavior under earthquake loading: the case of historical İstanbul, Earthquake Engineering and Structural Dynamics, 41, 19-39.
  • Preciado, A. (2015). Seismic Vulnerability and failure modes simulation of ancient masonry towersby validated virtual finite element models, Engineering Failure Analysis, 57, 72-87.
  • Pitilakis, D. ve Karatzetzou, A. (2014). Dynamic stiffness of monumental flexible masonry foundations, Bulletin of Earthquake Engineering, 13, 67-82.
  • Pintucchi, B. ve Zani, N. (2014). Effectiveness of nonlinear static procedures for slender masonrytowers, Bulletin of Earthquake Engineering, 12, 6, 2531-2556.
  • Rayhani, M.H. ve NAGGAR, E.L. (2008). Numerical modeling of seismic response of rigidfoundation on soft soil, International Journal of Geomechanics, 8,6, 336-346.
  • Rainieri, C. ve Fabbrocino, G. (2012). Estimating the elastic period of masonry towers, proceedingsof the 30th IMAC, A Conference and Exposition on Structural Dynamics, 5, 243-248.
  • Shakya, M., Varum, H., Vicente, R. ve Costa, A. (2016). Empirical formulation for estimating thefundamental frequency of slender masonry structures, International Journal of ArchitecturalHeritage, 10, 1, 55-66.
  • Ubertini, F., Comanducci, G., Cavalagli, N., Pisello, A.L., Materazzi, L.A. ve Cotana, F. (2017).Environmental effects on natural frequencies of the San Pietro Bell tower in perugia, ıtaly, and their removal for structural performance assessment, Mechanical Systems and Signal Processing,82, 307-322.
  • Valente, M. ve Milani, G. (2016). Non-linear dynamic and static analyses on eight historicalmasonry towers in the north-east of ıtaly, Engineering Structures, 114, 241-270.
  • Valente, M., Barbieri, G. ve Biolzi, L. (2017). Damage Assessment of three medieval churches After the 2012 Emilia earthquake, Bulletin of Earthquake Engineering, doi:10.1007/s10518-016-0073-7
Toplam 39 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Emin Hökelekli 0000-0003-0548-5214

Yayımlanma Tarihi 15 Haziran 2020
Gönderilme Tarihi 30 Eylül 2019
Yayımlandığı Sayı Yıl 2020

Kaynak Göster

IEEE E. Hökelekli, “Yapı-Zemin Etkileşiminin Tarihi Yığma Minarelerin Deprem Davranışına Etkisi”, DÜMF MD, c. 11, sy. 2, ss. 825–838, 2020, doi: 10.24012/dumf.626894.
DUJE tarafından yayınlanan tüm makaleler, Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır. Bu, orijinal eser ve kaynağın uygun şekilde belirtilmesi koşuluyla, herkesin eseri kopyalamasına, yeniden dağıtmasına, yeniden düzenlemesine, iletmesine ve uyarlamasına izin verir. 24456