Araştırma Makalesi
BibTex RIS Kaynak Göster

Pb’ un grafen oksit nanopartikülü ile giderimi ve grafen oksit’ in geri kazanımı

Yıl 2020, , 1187 - 1196, 30.09.2020
https://doi.org/10.24012/dumf.639086

Öz

Bu çalışmada, Maden Endüstrisi atık sularında bulunan Kurşun’u (Pb) adsorpsiyon prosesiyle gidermek için laboratuvar koşullarında Grafen Oksit (GO) adsorbanı geliştirilmiştir. XRD sonuçlarına göre grafen oksitin yüzeyinde 2Ѳ=16,880 ve 2Ѳ=44,600 ya karşılık gelen şiddet değerleri sırasıyla 004 şiddet birimi ve 106 şiddet birimi olup kristal özelliğindedir. SERS analizlerine göre grafen oksite bağlanmış kurşunun D ve G bantlarındaki maximum pikleri sırasıyla 1450 ve 1670 cm-1 dır. Grafen oksitin BET yüzey alanı 21,3 m2/g, delik hacmi 3,98 nm olup kurşunun grafen oksit yüzeyine ve iç tabakalarına girişim yaptığı ve yüzeyine tutunduğu gözlenmiştir. Adsorpsiyonun ise C=C/C-C, C-O, C-OH ve C=O organik halkalarıyla bağlanma sonucu oluştuğu görülmüştür. TEM analizi sonuçları grafen oksitin yüzey katmanlarının adsorpsiyon öncesi katmanlaşmış olduğunu, adsorpsiyon prosesi sonrası ise grafen oksitin küresel partiküller halinde olduğunu göstermiştir. Maximum kurşun adsorpsiyon verimi (% 99,99) için optimum işletme koşulları (grafen oksit konsantrasyonu 1,8 mg/L, sıcaklık=18oC, temas süresi 28 dk, pH=8,5) saptanmıştır. Düşük pH ta H+ iyonları çok fazla olduğundan düşük adsorpsiyon kapasiteleri oluşmaktadır. Kurşunun grafen oksite adsorpsiyonu düşük sıcaklıkta olmakta, yüksek sıcaklıkta adsorpsiyon bloke edilmektedir. Grafen oksitin Kurşun adsorplama kapasitesi 320 mg/g dır. Adsorpsiyon kinetiği, yalancı birinci mertebe kinetik modele, adsorpsiyon izotermi ise, Freundlich modeline uymaktadır. Grafen oksit çok etkin bir adsorban olup, 8 kez ardışık kullanımda elde edilen maximum kurşun giderim verimi % 99’dur.

Destekleyen Kurum

-

Proje Numarası

-

Teşekkür

-

Kaynakça

  • Alqadami, A.A., Khan, M.A., Siddiqui, M.R., Alothman, Z.A. (2018). Development of citric anhydride anchored mesoporous MOF through post synthesis modification to sequester potentially toxic lead(II) from water. Microporous Mesoporous Mater. 261, 198-206.
  • Aksu, Z., Gonen, F. (2004). Adsorption of phenol by immobilized activated sludge in a continuous packed bed: prediction of breakthrough curves. Process Biochem. 39, 599–613.
  • Bhatti, A.A., Memon, S., Memon, N. (2014). Dichromate extraction by calix [4] arene appended amberlite XAD-4 resin. Separ. Sci. Technol. 49 (5), 664-672.
  • Dreyer, D.R., Park, S., Bielawski, C.W., Ruoff, R.S. (2010). The chemistry of graphene oxide. Chem. Soc. Rev. 39 (1), 228-240.
  • Hadi, P., To, M.H., Hui, C.W., Lin, C.S.K., McKay, G. (2015). Aqueous mercury adsorption by activated carbons. Water Res. 73, 37-55.
  • Hasar, H. (2003). Adsorption of nickel(II) from aqueous solution onto activated carbon prepared from almond husk. J. Hazard. Mater. 97 (1–3), 49–57.
  • Jun, B.M., Kim, S., Kim, Y., Her, N., Heo, J., Han, J., Jang , M., Park, C.M., Yoon, Y. (2019). Comprehensive evaluation on removal of lead by graphene oxide and metal organic Framework. Chemosphere 231, 82-92.
  • Kumar, D.J. ve Gaur J.P. (2011). Chemical reaction- and particle diffusion-based kinetic modeling of metal biosorption by a Phormidium sp.-dominated cyanobacterial mat.Bioresource Technology 102 ,633–640.
  • Li, J., Wang, X.X., Zhao, G.X., Chen, C.L., Chai, Z.F., Alsaedi, A., Hayatf, T., Wang, X.K. (2018). Metal-organic framework-based materials: superior adsorbents for the capture of toxic and radioactive metal ions. Chem. Soc. Rev. 47, 2322–2356.
  • Li, Y.G., Wu, Y.Y. (2009). Coassembly of graphene oxide and nanowires for large-area nanowire alignment. J. Am. Chem. Soc. 131, 5851–5857.
  • Lim, J.Y., Mubarak, N.M., Abdullah, E.C., Nizamuddin, S., Khalid, M. (2018). Recent trends in the synthesis of graphene and graphene anomaterials for removal of heavy metals. J. Ind. Eng. Chem. 66, 29-44.
  • Malkoc, E., Nuhoglu, Y. (2003). The removal of chromium(VI) from synthetic wastewater by Ulothrix zonata. Fresenius Environ. Bull. 12 (4), 376–381.
  • Mishra, A.K., Ramaprabhu, S. (2011). Functionalized graphene sheets for arsenic removal and desalination of sea water. Desalination 282, 39-45.
  • Pardo, R., Herguedas, M., Barrado, E. (2003). Adsorption of cadmium, copper, lead and zinc by inactive biomass of Pseudomonas putida. Anal. Bioanal. Chem., 376, 26–32.
  • Peng, W., Li, H., Liu, Y., Song, S. (2017). A review on heavy metal ions adsorption from water by graphene oxide and its composites. J. Mol. Liq. 230, 496-504.
  • Ramesha, G.K., Vijaya Kumara, A., Muralidhara, H.B., Sampath, S. (2011). Graphene and graphene oxide as effective adsorbents toward anionic and cationic dyes. J.Colloid Interface Sci. 361 (1), 270-277.
  • Saleh, T.A., Gupta, V.K. (2012). Column with CNT/magnesium oxide composite for lead(II) removal from water. Environ. Sci. Pollut. Res. 19 (4), 1224-1228.
  • Sitko, R., Turek, E., Zawisza, B., Malicka, E., Talik, E., Heimann, J., Gagor, A., Feist, B., Wrzalik, R. (2013). Adsorption of divalent metal ions from aqueous solutions using graphene oxide. Dalton Trans. 42 (16), 5682-5689.
  • Wang, H., Yuan, X., Wu, Y., Huang, H., Zeng, G., Liu, Y., Wang, X., Lin, N., Qi, Y. (2013). Adsorption characteristics and behaviors of graphene oxide for Zn(II) removal from aqueous solution. Appl. Surf. Sci. 279, 432-440.
  • Weber, W.J.ve Morris, J.C., 1963. Kinetics of adsorption on carbon solution. J. Sanit. Eng. Div. Am. Soc. Civil Eng. 89, 31–59.
  • Wu, F.C., Tseng, R.L., Juang, R.S. (2009). Characteristics of Elovich equation used for the analysis of adsorption kinetics in dye-chitosan systems. Chemical Engineering Journal 150, 366–373.
  • Xu, D., Tan, X.L., Chen, C.L., Wang, X.K. (2008). Adsorption of Pb(II) from aqueous solution to MX-80 bentonite: Effect of pH, ionic strength, foreign ions and temperature. Applied Clay Science, 41, 1–2, 37-46.
  • Zhang, J., Xie, X., Liang, C., Zhu, W., Men, X. (2019). Characteristics and mechanism of Pb(II) adsorption/desorption on GO/ r-GO under sulfide-reducing conditions. Journal of Industrial and Engineering Chemistry 73, 233–240.
  • Zhang, Y., Cao, B., Zhao, L.L., Sun, L.L., Gao, Y., Li, J.J., Yang, F. (2018). Biochar-supported Reduced graphene oxide composite for adsorption and coadsorption of atrazine and lead ions. Appl. Surf. Sci. 427, 147–155.
  • Zhao, G.X. , Huang, X.B., Tang, Z.W., Huang, Q.F., Niu, F.L., Wang, X.K. (2018). Polymer-based nanocomposites for heavy metal ions removal from aqueous solution. Polym. Chem. 9, 3562–3582.
  • Zhao, G., Ren, X., Gao, X., Tan, X., Li, J., Chen, C., Huang, Y.,Wang, X. (2011). Removal of Pb(II) ions from aqueous solutions on few-layered graphene oxide nanosheets. Dalton Trans. 40 (41), 10945-10952.
  • Zou, Y.D., Wang, X.X., Khan, A., Wang, P.Y., Liu, Y.H., Alsaedi, A., Hayat, T., Wang, X.K. (2016). Environmental remediation and application of nanoscale zerovalent iro n and its composites for the removal of heavy metal ions. Environ. Sci. Technol. 50, 7290–7304.
Toplam 27 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Sevil Akcaglar 0000-0002-5386-1862

Proje Numarası -
Yayımlanma Tarihi 30 Eylül 2020
Gönderilme Tarihi 28 Ekim 2019
Yayımlandığı Sayı Yıl 2020

Kaynak Göster

IEEE S. Akcaglar, “Pb’ un grafen oksit nanopartikülü ile giderimi ve grafen oksit’ in geri kazanımı”, DÜMF MD, c. 11, sy. 3, ss. 1187–1196, 2020, doi: 10.24012/dumf.639086.
DUJE tarafından yayınlanan tüm makaleler, Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır. Bu, orijinal eser ve kaynağın uygun şekilde belirtilmesi koşuluyla, herkesin eseri kopyalamasına, yeniden dağıtmasına, yeniden düzenlemesine, iletmesine ve uyarlamasına izin verir. 24456