Geosentetik Donatı Sayısı ve Konumunun Farklı Boyutlu Yol Numuneleri Üzerine Etkisinin İncelenmesi
Yıl 2020,
, 1307 - 1317, 30.09.2020
Elif Çiçek
Öz
Bu çalışmada, sonlu elemanlar yöntemi kullanılarak oluşturulan modeller için geosentetik donatının etkileri incelenmiştir. Plaxis 2D programı ile farklı model boyutlarında seçilen örnekler üzerinde yapılan analiz sonuçları değerlendirilmiştir. 5 cm ile 960 cm arasında alınan farklı model genişlikleri için yol temel tabakası modellenerek gerilme deformasyon davranışı ve oturma miktarları değerlendirilmiştir. Modellerin kırılma davranışları ile modeller içine konulan tek ve çoklu donatı tabakası (1, 2 ve 3) kullanılma durumları için de değerlendirmeler yapılmıştır. Tek donatının numune içinde farklı bölgelere konulmasının etkileri de karşılaştırılmıştır. En iyi performansın üç adet donatı kullanılması durumunda görüldüğü belirtilebilmektedir. Donatısız durumda model boyutu pek etkili olmasa da donatılı modeller için numune ölçüleri etkili olabilmiştir. Ayrıca, oturma ve modellerin kırılma modellerinde donatının etkili olduğu görülmüştür.
Destekleyen Kurum
Hacettepe Üniversitesi
Proje Numarası
FHD-2017-13555
Teşekkür
Yazar, bu çalışmanın yürütülmesinde kullanılan sonlu elemanlar programının temini için Hacettepe Üniversitesi Bilimsel Araştırmalar Programına (FHD-2017-13555) teşekkür etmektedir.
Kaynakça
- [1] Saghebfar, M. (2014). Performance of Geotextile-reinforced Bases for Paved Roads, PhD Dissertation, Kansas State University, Manhattan, KS.
- [2] Zofka, A., Maliszewski, M., Maliszewska, D. (2017). Glass and carbon geogrid reinforcement of asphalt mixtures. Road Materials and Pavement Design, 18 (S1), 471–490.
- [3] Latha, G.M. and Murthy, V.S. (2007). Effects of reinforcement form on the behavior of geosynthetic reinforced sand. Geotextiles and Geomembranes, 25, 23–32.
- [4] Nguyen, M., Blanc, J., Kerzrého, J. and Hornych, P. (2013). Review of glass fibre grid use for pavement reinforcement and APT experiments at IFSTTAR. Road Materials and Pavement Design, 14, S1, 287–308.
- [5] Elton, D. J., and Patawaran, M. A. B. (2004). Mechanically stabilized earth reinforcement tensile strength from tests of geotextile-reinforced soil. Transportation Research Record 1868, Transportation Research Board, Washington, DC, 81–88.
- [6] Watts, G.R.A., Blackman, D.I., Jenner, C.G. (2004). The performance of reinforced unpaved sub-bases subjected to trafficking. Third European Geosynthetics Conference, vol. 1. Munich, 261–266.
- [7] Hufenus, R., Rueegger, R., Banjac, R., Mayorc, P., Springman, S.M., Brönnimann, R. (2006). Full-scale field tests on geosynthetic reinforced unpaved roads on soft subgrade, Geotextiles and Geomembranes, 24, 21–37.
- [8] Cerato, A.B. and Lutenegger, A.J.(2007) Scale Effects of Shallow Foundation Bearing Capacity on Granular Material. Journal of Geotechnical and Geoenvironmental Engineering, 133 (10): 1192-1202.
- [9] Zhu, F., Clark, J.I. and Phillips, R.(2001) Scale Effect of Strip and Circular Footings Resting on Dense Sand. Journal of Geotechnical and Geoenvironmental Engineering, 127(7): 613-621.
- [10] Gu, F., Luo, X., Luo, R., Lytton, R. L., Hajj, E. Y., & Siddharthan, R. V. (2016) Numerical modeling of geogrid-reinforced flexible pavement and corresponding validation using large-scale tank test. Construction and Building Materials, 122, 214–230.
- [11] Ramos-García, J.A., Castro, M. (2017). Linear visco-elastic behavior of asphalt pavements: 3D-FE response models. Construction and Building Materials, 136, 414–425.
- [12] Djellali, A., Houam, A., Saghafi, B., Hamdane, A., Benghazi, Z. (2017). Static Analysis of Flexible Pavements over Expansive Soils. International Journal of Civil Engineering, 15, 391–400.
- [13] Ahirwar, S.K. and Mandal, J.N. (2017). Finite Element Analysis of Flexible Pavement with Geogrids. Procedia Engineering, 189, 411-416.
- [14] Zhang, J., Zhu, C., Li, X., Pei, J., Chen, J. (2017). Characterizing the three-stage rutting behavior of asphalt pavement with semi-rigid base by using UMAT in ABAQUS, Construction and Building Materials, 140, 496–507.
- [15] Helwany, S., Dyer, J., Leidy, J. (1998). Finite-element analyses of flexible pavements. Journal of Transportation Engineering, 124, 5,: 491-499.
- [16] Abu-Farsakh, M., Gub, J., Voyiadjis, G.Z. and Chen, Q. (2014). Mechanistic–empirical analysis of the results of finite element analysis on flexible pavement with geogrid base reinforcement, International Journal of Pavement Engineering, 15, 9, 786–798.
- [17] Gray, D. H., and Al-Refeai, T. (1986). Behavior of fabric-versus fiber-reinforced sand. Journal of Geotechnical Engineering, 112, 8, 804–820. doi:10.1061/(ASCE)0733-9410/(ASCE)0733-9410(1986)112:8 (804).
- [18] Ling, H.I. and Liu, H. (2003). Finite Element Studies of Asphalt Concrete Pavement Reinforced with Geogrid. Journal of Engıneering Mechanics, 129, 7, 801-811.
- [19] Wu, J. T., Pham, T. Q. & Adams, M. T. (2013). Composite Behavior of Geosynthetic Reinforced Soil Mass (No. FHWA-HRT-10-077), FHWA, Richmond, VA, USA.
- [20] Kandolkar, S. S., Mandal, J. N. (2014). Effect of reinforcement on stress–strain behavior of stone dust, International Journal of Geotechnical Engineering, 8, 4, 383-395.
- [21] Wu, H., Huang, B., Shu, X., Zhao, S. (2015). Evaluation of geogrid reinforcement effects on unbound granular pavement base courses using loaded wheel tester, Geotextiles and Geomembranes, 43, 462-469.
- [22] Maher M., & Gray D. H. (1990). Static Response of Sands Reinforced with Randomly Distributed Fibers, Journal of Geotechnical Engineering, 116, 11, 1661–1677. doi:10.1061/(ASCE) 0733-9410(1990)116: 11(1661).
- [23] Chen, Q. (2007). An experimental study on characteristics and behavior of reinforced soil foundation, PhD dissertation, Louisiana State University, Baton Rouge, USA.