Çoklu Sosyal Ağlarda Aynı Kullanıcıları Belirleme Yöntemi
Yıl 2020,
, 1043 - 1054, 30.09.2020
Ahmet Anıl Müngen
,
Betül Bulut
,
Mehmet Kaya
Öz
Kullanıcılar tarafından değişik amaçla kullanılan her sosyal ağ farklı kullanıcı verileri içermektedir. Kullanıcıların farklı sosyal ağlardaki hesaplarını bulmak ve bulunan verileri birleştirip tek bir veri havuzunda derlemek hem tavsiye edici sistemleri iyileştirecek hem de kullanıcı deneyimini attıracak çok önemli bir etken olacaktır. Çalışma kapsamında özgün düğüm hizalama ve düğüm benzerlik yöntemleri önerilmiştir. Topolojik bazlı düğüm önermede çapa yöntemi kullanılırken bağlantılar arası yoğunluk ilişkileri de dikkate alınmıştır. Benzerlik tabanlı düğüm benzerlik yönteminde ise öznitelik seçim kriterleri, başlangıç noktası tespit problemi ve değişken formülasyon ile başarılı düğüm eşleştirme sayısı arttırılmıştır. Bununla birlikte bu çalışmada hem kullanıcıların profil özelliklerine göre hem de diğer kullanıcılar ile aralarındaki ilişkilere göre hizalama ve benzerlik tespiti yapılmıştır. Farklı sosyal ağlardaki aynı hesaplarının bulunması ile ilgili dokuz farklı metot önerilmiştir. Önerilen yöntemler İki ile altı arasında değişen sosyal ağ verilerinde kadar toplanan sosyal ağlarda test edilmiş ve kullanıcıların eşleşme başarı oranları ölçülmüştür. Bu sonuçlarda, %95’lere varan başarı oranları yakalanmıştır. Böylece çoklu sosyal ağlarda farklı öznitelikleri aynı graf üzerinde toplanmış kullanıcılar için birden fazla sosyal ağı kapsayan geniş bir kullanıcı profili oluşturulmasına imkân sağlanmıştır.
Destekleyen Kurum
TÜBİTAK
Teşekkür
Bu çalışma TÜBİTAK tarafından 119E309 numaralı araştırma projesi kapsamında desteklenmiştir.
Kaynakça
- [1] J. Du, C. Jiang, K. C. Chen, Y. Ren, and H. V. Poor, “Community-structured evolutionary game for privacy protection in social networks,” IEEE Trans. Inf. Forensics Secur., vol. 13, no. 3, pp. 574–589, Mar. 2018, doi: 10.1109/TIFS.2017.2758756.
- [2] D. Koutra, H. Tong, and D. Lubensky, “Big-Align: Fast bipartite graph alignment,” in Proceedings - IEEE International Conference on Data Mining, ICDM, 2013, doi: 10.1109/ICDM.2013.152.
- [3] L. Adamic and E. Adar, “How to search a social network,” Soc. Networks, 2005, doi: 10.1016/j.socnet.2005.01.007.
- [4] J. Jaccard, Interaction Effects in Logistic Regression. 2011.
- [5] B. Aleman-Meza et al., “Semantic analytics on social networks: Experiences in addressing the problem of conflict of interest detection,” in Proceedings of the 15th International Conference on World Wide Web, 2006, doi: 10.1145/1135777.1135838.
- [6] V. D. Blondel, A. Gajardo, M. Heymans, P. Senellart, and P. Van Dooren, “A measure of similarity between graph vertices: Applications to synonym extraction and web searching,” SIAM Rev., 2004, doi: 10.1137/S0036144502415960.
- [7] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms , Second Edition. 2001.
- [8] B. Cai, H. Wang, H. Zheng, and H. Wang, “An improved random walk based clustering algorithm for community detection in complex networks,” in Conference Proceedings - IEEE International Conference on Systems, Man and Cybernetics, 2011, pp. 2162–2167, doi: 10.1109/ICSMC.2011.6083997.
- [9] F. Fouss, A. Pirotte, J. M. Renders, and M. Saerens, “Random-walk computation of similarities between nodes of a graph with application to collaborative recommendation,” IEEE Trans. Knowl. Data Eng., 2007, doi: 10.1109/TKDE.2007.46.
- [10] P. Symeonidis and E. Tiakas, “Transitive node similarity: Predicting and recommending links in signed social networks,” World Wide Web, vol. 17, no. 4, pp. 743–776, Jun. 2014, doi: 10.1007/s11280-013-0228-2.
- [11] G. Jeh and J. Widom, “SimRank: A measure of structural-context similarity,” in Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2002.
- [12] A. Clauset, C. Moore, and M. E. J. Newman, “Hierarchical structure and the prediction of missing links in networks,” Nature, vol. 453, no. 7191, pp. 98–101, 2008, doi: 10.1038/nature06830.
- [13] K. Musiał and P. Kazienko, “Social networks on the Internet,” World Wide Web, 2013, doi: 10.1007/s11280-011-0155-z.
- [14] L. Liu, W. K. Cheung, X. Li, and L. Liao, “Aligning users across social networks using network embedding,” in IJCAI International Joint Conference on Artificial Intelligence, 2016.
- [15] Y. Dong et al., “Link prediction and recommendation across heterogeneous social networks,” in Proceedings - IEEE International Conference on Data Mining, ICDM, 2012, doi: 10.1109/ICDM.2012.140.
- [16] L. Hu, J. Cao, G. Xu, L. Cao, Z. Gu, and C. Zhu, “Personalized recommendation via Cross-Domain Triadic Factorization,” in WWW 2013 - Proceedings of the 22nd International Conference on World Wide Web, 2013, doi: 10.1145/2488388.2488441.
- [17] J. Liu, F. Zhang, X. Song, Y.-I. Song, C.-Y. Lin, and H.-W. Hon, “What’s in a Name? An Unsupervised Approach to Link Users across Communities *,” Feb. 2013.
- [18] S. Liu, S. Wang, F. Zhu, J. Zhang, and R. Krishnan, “HYDRA: large-scale social identity linkage via heterogeneous behavior modeling,” in Proceedings of the 2014 ACM SIGMOD international conference on Management of data - SIGMOD ’14, 2014, doi: 10.1145/2588555.2588559.
- [19] J. Zhang and P. S. Yu, “Integrated anchor and social link predictions across social networks,” in IJCAI International Joint Conference on Artificial Intelligence, 2015.
- [20] S. Tan, Z. Guan, D. Cai, X. Qin, J. Bu, and C. Chen, “Mapping Users across Networks by Manifold Alignment on Hypergraph,” 28th AAAI Conf. Artif. Intell., 2014.
- [21] S. H. Wu, H. H. Chien, K. H. Lin, and P. S. Yu, “Learning the consistent behavior of common users for target node prediction across social networks,” in 31st International Conference on Machine Learning, ICML 2014, 2014.
- [22] M. Wang, Q. Tan, X. Wang, and J. Shi, “De-anonymizing social networks user via profile similarity,” in Proceedings - 2018 IEEE 3rd International Conference on Data Science in Cyberspace, DSC 2018, Jul. 2018, pp. 889–895, doi: 10.1109/DSC.2018.00142.
- [23] M. M. Rahman, “Intellectual knowledge extraction from online social data,” in 2012 International Conference on Informatics, Electronics and Vision, ICIEV 2012, 2012, pp. 205–210, doi: 10.1109/ICIEV.2012.6317392.