Araştırma Makalesi
BibTex RIS Kaynak Göster

Gümüş nano materyallerin sentezi, karakterizasyonu ve antimikrobiyal aktiviteleri

Yıl 2021, , 347 - 354, 30.03.2021
https://doi.org/10.24012/dumf.889403

Öz

Gümüş nano materyallerin kullanım alanları oldukça yaygındır. Farklı sentezleme yöntemleri ile elde edilebilirler. Bu çalışmada, gümüş nano materyaller (AgNP’ler) biyosentez yöntemi kullanılarak ekonomik ve basit bir şekilde elde edildi. Sentez sonucunda elde edilen AgNP’ler UV-visiblespektrofotometre (UV-Vis.), Taramalı Elektron Mikroskobu (SEM), X- Işınımı Kırınımı Difraktrometresi (XRD), Fourier dönüşümü kızılötesi spektroskopisi (FTIR), Zeta potansiyeli cihazları kullanılarak karakterize edildi. AgNP’lerin 426.66 nm dalga boyunda maksimum absorbansa sahip oldukları, küresel morfolojik yapı sergiledikleri, 17.68 nm kristal nano boyut ve yüzey yüklerinin -20.9 mV zeta potansiyeli dağılımı gösterdiği değerlendirildi. Patojen mikroorganizmalar üzerinde Minumum İnhibisyon Konsantrasyonları (MİK) 0.03-0.5 mg/L olarak mikrodilusyon yöntemi kullanılarak tespit edildi.

Kaynakça

  • 1. Solanki, J.N. and Murthy, Z.V.P., (2011). Controlled size silver nanoparticles synthesis with water-in-oil microemulsion method: A topical review. Industrial and Engineering Chemistry Research, 50, 12311–23.
  • 2. Kumar, R., Ghoshal, G., Jain, A. and Goyal, M., (2017). Rapid Green Synthesis of Silver Nanoparticles (AgNPs) Using (Prunus persica) Plants extract: Exploring its Antimicrobial and Catalytic Activities. Journal of Nanomedicine & Nanotechnology, 8, 1–8.
  • 3. Eren, A., Baran, M.F., (2019) . Fıstık ( Pistacia vera L . ) Yaprağından Gümüş Nanopartikül ( AgNP )’ lerin Sentezi , Karakterizasyonu ve Antimikrobiyal Aktivitesinin İncelenmesi Synthesis , Characterization and Investigation of Antimicrobial Activity of Silver Nanoparticles ( AgNP ). Türkiye Tarımsal Araştırmalar Dergisi 6, 165–73.
  • 4. Baran, M.F., (2018). Green Synthesıs of Sılver Nanopartıcles (AGNPs) Usıng Pıstacıa Terebınthus Leaf Extract: Antımıcrobıal Effect And Characterızatıon. International Journal on Mathematic, Engineering and Natural Sciences, 5, 67–75.
  • 5. Baran, M., (2019). Prunus avium kiraz yaprağı özütü ile gümüş nanopartikül ( AgNP ) sentezi ve antimikrobiyal etkisinin incelenmesi. Dicle Üniversitesi Mühendislik Dergisi, 10, 221–7.
  • 6. Baran, MF., Keskin, C., Atalar, MN., Baran, A., (2021). Environmentally Friendly Rapid Synthesis of Gold Nanoparticles from Artemisia absinthium Plant Extract and Application of Antimicrobial Activities. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 11, 365–75.
  • 7. El-Batal, A.I., Al-Hazmi, N.E., Mosallam, F.M. and El-Sayyad, G.S., (2018). Biogenic synthesis of copper nanoparticles by natural polysaccharides and Pleurotus ostreatus fermented fenugreek using gamma rays with antioxidant and antimicrobial potential towards some wound pathogens. Microbial Pathogenesis, Elsevier Ltd. 118, 159–69.
  • 8. Doğaroğlu, Z.G., Eren, A. and Baran, M.F., (2019). Effects of ZnO Nanoparticles and Ethylenediamine- N , N ′ - Disuccinic Acid on Seed Germination of Four Different Plants. 1800111, 1–5.
  • 9. Eren, A., Baran, M.F., (2019). Green Synthesıs , Characterızatıon And Antımıcrobıal Actıvıty Of Sılver Nanopartıcles ( Agnps ) From Maıze ( Zea mays L .). Applıed Ecology and Envıronmental Research, 17, 4097–105.
  • 10. Baran, M.F., Saydut, A., Umaz, A., (2019). Gümüş nanomalzeme sentezi ve antimikrobiyal uygulamaları. Dicle Üniversitesi Mühendislik Dergisi, 10, 689–95.
  • 11. Li, G., He, D., Qian, Y., Guan, B., Gao, S. and Cui, Y., (2012). Fungus-Mediated Green Synthesis of Silver Nanoparticles Using Aspergillus terreus. International Journal of Molecular Sciences, 13, 466–76.
  • 12. Mousavi, S.A., Almasi, A., Navazeshkh, F. and Falahi, F., (2019). Biosorption of lead from aqueous solutions by algae biomass: Optimization and modeling. Desalination and Water Treatment, 148, 229–37.
  • 13. Gopalu, K., Matheswaran J., Alexander, G., Juan, Antonio LT., Evgeny, K., D.K., (2016). Rapid Biosynthesis of AgNPs Using Soil Bacterium Azotobacter vinelandii With Promising Antioxidant and Antibacterial Activities for Biomedical Applications. The Journal of The Minerals, Metals & Materials Society, 69, 1206–12.
  • 14. Baran, M.F., Koç, A. and Uzan, S., (2018). Kenger (Gundelia tournefortii) Yaprağı İle Gümüş Nanopartikül(Agnp) Sentezi, Karakterizasyonu ve Antimikrobiyal Uygulamaları. International Journal on Mathematic, Engineering and Natural Sciences, 5, 44–52.
  • 15. Khan, A.U., Yuan, Q., Khan, Z.U.H., Ahmad, A., Khan, F.U., Tahir, K, Ullah, S., (2018). An eco-benign synthesis of AgNPs using aqueous extract of Longan fruit peel: Antiproliferative response against human breast cancer cell line MCF-7, antioxidant and photocatalytic deprivation of methylene blue. Journal of Photochemistry and Photobiology B: Biology, 183, 367–73.
  • 16. Velmurugan, P., Anbalagan, K., Manosathyadevan, M., Lee, K.J., Cho, M., Lee, S.M. Park, J. H., Oh, S. G., Bang, K. S., Oh, B. T., (2014). Green synthesis of silver and gold nanoparticles using Zingiber officinale root extract and antibacterial activity of silver nanoparticles against food pathogens. Bioprocess and Biosystems Engineering, 37, 1935–43.
  • 17. Remya, R.R., Rajasree, S.R.R., Aranganathan, L. and Suman, T.Y., (2015). An investigation on cytotoxic effect of bioactive AgNPs synthesized using Cassia fistula flower extract on breast cancer cell MCF-7. Biotechnology Reports, Elsevier B.V. 8, 110–5.
  • 18. Ali, M., Kim, B., Belfield, K.D., Norman, D., Brennan, M. and Ali, G.S., (2016). Green synthesis and characterization of silver nanoparticles using Artemisia absinthium aqueous extract - A comprehensive study. Materials Science and Engineering C, 58, 359–65.
  • 19. Umaz, A., Koç, A., Baran, M.F. Keskin, C., Atalar, M.N., (2019). Hypericum Triquetrifolium Turra Bitkisinden Gümüş Nanopartiküllerin Sentezi, Karekterizasyonu ve Antimikrobial Etkinliğinin İncelenmesi. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 9, 1467–75.
  • 20. Rajeshkumar, S. and Bharath, L. V., (2017). Mechanism of plant-mediated synthesis of silver nanoparticles – A review on biomolecules involved, characterisation and antibacterial activity. Chemico-Biological Interactions, Elsevier Ireland Ltd. 273, 219–27.
  • 21. Gupta, S.D., Agarwal, A. and Pradhan, S., (2018). Phytostimulatory effect of silver nanoparticles (AgNPs) on rice seedling growth: An insight from antioxidative enzyme activities and gene expression patterns. Ecotoxicology and Environmental Safety, Elsevier Inc. 161, 624–33.
  • 22. Baran, M.F., (2019). Synthesis and Antimicrobial Applications of Silver Nanoparticles From artemisia absinthium plant. Biological and Chemical Research, 6, 96–103. 23. Hafez, R.A., Abdel-wahhab, M.A., Sehab, A.F. and El-din, A.A.K., (2017). Green synthesis of silver nanoparticles using Morus nigra leave extract and evaluation their antifungal potency on phytopathogenic fungi. Journal of Applied Pharmaceutical Science, 7, 41–8.
  • 24. Kumar, V., Gundampati, R.K., Singh, D.K., Bano, D., Jagannadham, M. V. and Hasan, S.H., (2016). Photoinduced green synthesis of silver nanoparticles with highly effective antibacterial and hydrogen peroxide sensing properties. Journal of Photochemistry and Photobiology B: Biology, Elsevier B.V. 162, 374–85.
  • 25. Pechyen, C., (2020). A flower shape-green synthesis and characterization of silver nanoparticles ( AgNPs ). Integrative Medicine Research, Korea Institute of Oriental Medicine. 9, 11003–12.
  • 26. Baran., M.F., (2019). Synthesis , Characterization and Investigation Of Antimicrobial Activity of Silver Nanoparticles From Cydonia Oblonga Leaf. Applıed Ecology and Envıronmental Research, 17, 2583–92.
  • 27. Dubey, S.P., Dwivedi, A.D., Lahtinen, M., Lee, C., Kwon, Y.N. and Sillanpaa, M., (2013). Protocol for development of various plants leaves extract in single-pot synthesis of metal nanoparticles. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, Elsevier B.V. 103, 134–42.
  • 28. Sampaio, S. and Viana, J.C., (2018). Production of silver nanoparticles by green synthesis using artichoke (Cynara scolymus L.) aqueous extract and measurement of their electrical conductivity. Advances in Natural Sciences: Nanoscience and Nanotechnology, IOP Publishing. 9, 1–10.
  • 29. Rolim, W.R., Pelegrino, M.T., de Araújo Lima, B., Ferraz, L.S., Costa, F.N., Bernardes, J.S. Rodigues, T. B., Marcelo S., Amedea B., (2019). Green tea extract mediated biogenic synthesis of silver nanoparticles: Characterization, cytotoxicity evaluation and antibacterial activity. Applied Surface Science, Elsevier. 463, 66–74.
  • 30. Baran, M. F., Saydut, A., (2019). Altın nanomalzeme sentezi ve karekterizasyonu. Dicle Üniversitesi Mühendislik Dergisi, 10, 1033–40.
  • 31. Baran, M.F., Koç, A., ve Uzan, S., (2018). Kenger (Gundelia tournefortii) Yaprağı İle Gümüş Nanopartikül(Agnp) Sentezi, Karakterizasyonu ve Antimikrobiyal Uygulamaları. International Journal on Mathematic, Engineering and Natural Sciences, 5, 44-52
  • 32. Kumar, B., Smita, K., Cumbal, L. and Debut, A., (2015). Green synthesis of silver nanoparticles using Andean blackberry fruit extract. Saudi Journal of Biological Sciences, King Saud University. 24, 45–50.
  • 33. Ali, M.H., (2020). Eco-friendly synthesis of silver nanoparticles from crust of Cucurbita Maxima L. (red pumpkin). EurAsian Journal of BioSciences Eurasia J Biosci, 14, 2829–33.
  • 34. Shaheen, T.I. and Abd El Aty, A.A., (2018). In-situ green myco-synthesis of silver nanoparticles onto cotton fabrics for broad spectrum antimicrobial activity. International Journal of Biological Macromolecules, Elsevier B.V. 118, 2121–30.
  • 35. Arumai Selvan, D., Mahendiran, D., Senthil Kumar, R. and Kalilur Rahiman, A., (2018). Garlic, green tea and turmeric extracts-mediated green synthesis of silver nanoparticles: Phytochemical, antioxidant and in vitro cytotoxicity studies. Journal of Photochemistry and Photobiology B: Biology, 180, 243–52.
  • 36. Oliveira, A.C. de J., Araújo, A.R. de, Quelemes, P.V., Nadvorny, D., Soares-Sobrinho, J.L., Leite, J.R.S. de A. da Silva-Filho, E., Silva, D. A., (2019). Solvent-free production of phthalated cashew gum for green synthesis of antimicrobial silver nanoparticles. Carbohydrate Polymers, Elsevier. 213, 176–83.
  • 37. Patil, M.P., Singh, R.D., Koli, P.B., Patil, K.T., Jagdale, B.S., Tipare, A.R., (2018). Antibacterial potential of silver nanoparticles synthesized using Madhuca longifolia flower extract as a green resource. Microbial Pathogenesis, Elsevier Ltd. 121, 184–9.
  • 38. Swamy, M.K., Akhtar, M.S., Mohanty, S.K. and Sinniah, U.R., (2015). Synthesis and characterization of silver nanoparticles using fruit extract of Momordica cymbalaria and assessment of their in vitro antimicrobial, antioxidant and cytotoxicity activities. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 151, 939–44.
  • 39. Durán, N., Durán, M., Jesus, M.B. De, Seabra, A.B., Fávaro, W.J. and Nakazato, G., (2015). Silver Nanoparticles: A New View on Mechanistic Aspects on Antimicrobial Activity. Nanomedicine: Nanotechnology, Biology, and Medicine, Elsevier B.V. 12, 789–99.
  • 40. Singh, P., Garg, A., Pandit, S. and Mokkapati, V.R.S.S., (2018). Antimicrobial Effects of Biogenic Nanoparticles. Nanomaterials, 8, 1–19.
  • 41. Gopinath, V., Priyadarshini, S., Loke, M.F., Arunkumar, J., Marsili, E., MubarakAli, D. et al., (2017). Biogenic synthesis, characterization of antibacterial silver nanoparticles and its cell cytotoxicity. Arabian Journal of Chemistry, King Saud University. 10, 1107–17.
Toplam 40 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Necmettin Aktepe 0000-0003-2192-9049

Yayımlanma Tarihi 30 Mart 2021
Gönderilme Tarihi 2 Mart 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

IEEE N. Aktepe, “Gümüş nano materyallerin sentezi, karakterizasyonu ve antimikrobiyal aktiviteleri”, DÜMF MD, c. 12, sy. 2, ss. 347–354, 2021, doi: 10.24012/dumf.889403.
DUJE tarafından yayınlanan tüm makaleler, Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır. Bu, orijinal eser ve kaynağın uygun şekilde belirtilmesi koşuluyla, herkesin eseri kopyalamasına, yeniden dağıtmasına, yeniden düzenlemesine, iletmesine ve uyarlamasına izin verir. 24456