Araştırma Makalesi
BibTex RIS Kaynak Göster

Güç Sistemlerindeki Optimum Otomatik Gerilim Regülasyonu için Çoklu Amaç Fonksiyonunun Belirlenmesi

Yıl 2019, Cilt: 10 Sayı: 1, 1 - 12, 15.03.2019
https://doi.org/10.24012/dumf.396192

Öz

Elektrik güç sistemlerinde sistem gerilimi, güç kalitesine etki eden en
önemli parametrelerden biri olup çok kritik bir öneme sahiptir. Güç
sistemlerinde gerilim kontrolü otomatik gerilim regülatörleri (OGR) ile
yapılmaktadır.
Otomatik
gerilim regülatörleri, sistem geriliminin sabit tutulmasını sağlarlar.
Bir OGR sisteminde PID denetleyici
parametrelerinin doğru bir şekilde belirlenmesi son derece önemlidir. Bu
parametrelerin en iyilerini bulma yöntemlerinden biriside optimizasyon tekniklerini
kullanmaktır. Bu tekniklerde kullanılan amaç fonksiyonları genellikle ITSE,
ITAE, ISE ve IAE’dir. Halbuki amaç fonksiyonunun sisteme, probleme ve kısıtlara
göre değişiklik göstermesi gerekmektedir ve optimizasyon algoritmalarının doğru
yönlenmesi için kritik öneme sahiptir. Dolayısı ile optimizasyonun birden fazla
amaç gözetilerek yapılması ihtiyacı ortaya çıkar.
Kısıtlı bir süre içerisinde otomatik
gerilim regülatörleri için birden fazla amaç gözetilerek en iyi amaç
fonksiyonunun elde edilmesi, bir çok amaç fonksiyonlu optimizasyon problemini
oluşturur.
Bu bağlamda
yapılan bu çalışmada, bir OGR sisteminde optimal PID kazançlarının belirlenmesi
için en iyi amaç fonksiyonunu bulma amaçlanmıştır.
Birden fazla amacı karşılamak amacıyla ortaya çıkan
çok amaç fonksiyonlu optimizasyon problemi, bu çalışma kapsamında belirlenen en
uygun skalarizasyon tekniği ile birden fazla tek amaç fonksiyonlu optimizasyon
problemine indirgenmiş, indirgenen her bir problem ayrı ayrı eş zamanlı olarak
çözülmüştür.
Çalışmada
optimizasyon yöntemi olarak literatürde yaygın olarak bilinen PSO
kullanılmıştır. Belirlenen polinomal amaç fonksiyonunun literatürde yaygın
olarak kullanılan 4 amaç fonksiyonuna göre çok daha iyi sonuçlar yakaladığı
görülmüştür. 

Kaynakça

  • Akça, E. (2015). Genel Atama Problemlerinin Grafik İşlemci Birimlerinin Üzerinde Çözümü. Ankara Üniversitesi.
  • Akyol, S., Alataş, B. (2012). Güncel Sürü Zekâsı Optimizasyon Algoritmaları. Nevşehir Üniversitesi Fen Bilimleri Enstitü Dergisi, 1, 36–50.
  • Alataş, B. (2007). Kaotik Haritalı Parçacık Sürü Optimizasyon Algoritmaları Geliştirme. Fırat Üniversitesi.
  • Campo, A.B. (2012). PID Control Design. Içinde MATLAB - A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1. InTech.
  • Chatterjee, S., Mukherjee, V. (2016). PID controller for automatic voltage regulator using teaching–learning based optimization technique. International Journal of Electrical Power & Energy Systems, 77, 418–429.
  • Coello Coello, C.A., Reyes-Sierra, M. (2006). Multi-Objective Particle Swarm Optimizers: A Survey of the State-of-the-Art. International Journal of Computational Intelligence Research, 2.
  • Coşkun, İsmail; Terzioğlu, H. (2007). Hız Performans Eğrisi Kullanılarak Kazanç (Pıd) Parametrelerinin Belirlenmesi. Selçuk-Teknik Dergisi, 6, 180–205.
  • Crnosija, P., Krishnan, R., Bjazic, T. (2006). Optimization of PM Brushless DC Motor Drive Speed Controller Using Modification of Ziegler-Nichols Methods Based on Bodé Plots. Içinde 2006 12th International Power Electronics and Motion Control Conference. (ss. 343–348). IEEE.Van Cutsem, T., Vournas, C. (2008). Voltage stability of electric power systems,
  • Dembicki, E., Chi, T. (1989). System analysis in calculation of cantilever retaining walls. International Journal for Numerical and Analytical Methods in Geomechanics, 13, 599–610. Available at: http://www.loc.gov/catdir/description/mh022/93039219.html.
  • Dorigo, M., Maniezzo, V., Colorni, a (1991). The ant system: An autocatalytic optimizing process. TR91-016, Politecnico di Milano, 1–21. Available at: http://lis.nsysu.edu.tw/exam/doctor/mana/infom/infom_93.pdf.
  • Eberhart, R.C., Shi, Y. (1998). Comparison between genetic algorithms and particle swarm optimization. Içinde Evolutionary Programming VII. (ss. 611–616).
  • Erkol, H.O. (2017). GA ve PSO ile Kontrol Parametrelerinin Optimizasyonu. Karaelmas Fen ve Mühendislik Dergisi, 7, 179–185.
  • Gaing, Z.L. (2004). A Particle Swarm Optimization Approach for Optimum Design of PID Controller in AVR System. IEEE Transactions on Energy Conversion, 19, 384–391. Available at: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1300705.
  • Gozde, H., Taplamacioglu, M.C. (2011). Comparative performance analysis of artificial bee colony algorithm for automatic voltage regulator (AVR) system. Journal of the Franklin Institute, 348, 1927–1946.
  • Joro, T., Korhonen, P., Wallenius, J. (1998). Structural comparison of data envelopment analysis and multiple objective linear programming. Management Science, 44, 962–970.
  • Kennedy, J., Eberhart, R. (1995). Particle swarm optimization. Neural Networks, 1995. Proceedings., IEEE International Conference on, 4, 1942–1948 c.4.
  • Keskintürk, T. (2006). Diferansiyel gelişim algoritması. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi, 5, 85–99.
  • Koski, J., Silvennoinen, R. (1987). Norm methods and partial weighting in multicriterion optimization of structures. International Journal for Numerical Methods in Engineering, 24, 1101–1121.
  • Kundur, P. (1994). Power system stability and control. McGraw-Hill, 45–138.
  • Maiti, D., Acharya, A., Chakraborty, M., vd. (2008). Tuning PID and Fractional PID Controllers using the Integral Time Absolute Error Criterion. Içinde Proceedings of the 2008 4th International Conference on Information and Automation for Sustainability, ICIAFS 2008. (ss. 457–462).
  • Marini, F., Walczak, B. (2015). Particle swarm optimization (PSO). A tutorial. Chemometrics and Intelligent Laboratory Systems, 149, 153–165.
  • Marler, R.T., Arora, J.S. (2005). Function-transformation methods for multi-objective optimization. Engineering Optimization, 37, 551–570.
  • Marler, R.T., Arora, J.S. (2004). Survey of multi-objective optimization methods for engineering. Structural and Multidisciplinary Optimization, 26, 369–395.
  • Marler, R.T., Arora, J.S. (2010). The weighted sum method for multi-objective optimization: New insights. Structural and Multidisciplinary Optimization, 41, 853–862.
  • Mayer, D.G., Kinghorn, B.P., Archer, A.A. (2005). Differential evolution – an easy and efficient evolutionary algorithm for model optimisation. Agricultural Systems, 83, 315–328.
  • Mohanty, P.K., Sahu, B.K., Panda, S. (2014). Tuning and Assessment of Proportional–Integral–Derivative Controller for an Automatic Voltage Regulator System Employing Local Unimodal Sampling Algorithm. Electric Power Components and Systems, 42, 959–969.
  • Montiel, O., Sepulveda, R., Melin, P., vd. (2007). Performance of a Simple Tuned Fuzzy Controller and a PID Controller on a DC Motor. Içinde 2007 IEEE Symposium on Foundations of Computational Intelligence. (ss. 531–537). IEEE.
  • Obika, M., Yamamoto, T. An evolutionary design of robust PID controllers. Içinde IEEE International Conference Mechatronics and Automation, 2005. (ss. 101–106). IEEE.
  • Ortakcı, Yasin; Göloğlu, C. (2012). Parçacık Sürü Optimizasyonu İle Küme Sayısının Belirlenmesi.
  • Ortakçı, Y. (2011). Parçacık Sürü Optimizasyonu Yöntemlerinin Uygulamalarla Karşılaştırılması. Karabük Üniversitesi.
  • Özdemir, M.T., Çelik, V. (2017). PI Kontrolörlü Otomatik Gerilim Regülasyon Sisteminin Kararlılık Analizi. SAÜ Fen Bilimleri Enstitüsü Dergisi, 21, 1–1. Available at: http://dergipark.gov.tr/doi/10.16984/saufenbilder.270251 [Erişim Temmuz 13, 2017].
  • Özdemir, M.T., Öztürk, D., Eke, İ., vd. (2015). Tuning of Optimal Classical and Fractional Order PID Parameters for Automatic Generation Control Based on the Bacterial Swarm Optimization. Içinde IFAC-PapersOnLine. (ss. 501–506).
  • Panda, R.C., Yu, C., Huang, H. (2004). PID tuning rules for SOPDT systems: review and some new results. ISA transactions, 43, 283–295.
  • Panda, S., Sahu, B.K., Mohanty, P.K. (2012). Design and performance analysis of PID controller for an automatic voltage regulator system using simplified particle swarm optimization. Journal of the Franklin Institute, 349, 2609–2625.
  • Rubaai, A., Young, P. (2011). EKF-Based PI-/PD-Like Fuzzy-Neural-Network Controller for Brushless Drives. IEEE Transactions on Industry Applications, 47, 2391–2401.
  • Saramago, S.F.P., Steffen Jr., V. (1998). Optimization of the Trajectory Plannung of Robot Manipulators Taking Into Account the Dynamics of the System. Mechanism and Machine Theory, 33, 883–894.
  • Shou-Rong Qi, Dong-Feng Wang, Pu Han, vd. Grey prediction based RBF neural network self-tuning PID control for turning process. Içinde Proceedings of 2004 International Conference on Machine Learning and Cybernetics (IEEE Cat. No.04EX826). (ss. 802–805). IEEE.
  • Storn, R., Price, K. (1995). Differential Evolution - A simple and efficient adaptive scheme for global optimization over continuous spaces. Technical report, International Computer Science Institute, 1–15.
  • Taylor, C. (1982). Power System Voltage Stability. IEEE Transactions on Power Apparatus and Systems, PAS-101.
  • Trautmann, H., Mehnen, J. (2009). Preference-based Pareto optimization in certain and noisy environments. Engineering Optimization, 41, 23–38.
  • Tutkun, N., Maden, D. (2010). Determination of the PID controller parameters for a DC shunt motor using the genetic algorithm method. Içinde 2010 National Conference on Electrical, Electronics and Computer Engineering, ELECO 2010.
  • Visioli, A. (2001). Tuning of PID controllers with fuzzy logic. IEE Proceedings - Control Theory and Applications, 148, 1–8.
  • Yegireddy, N.K., Panda, S. (2014). Design and performance analysis of PID controller for an AVR system using multi-objective non-dominated shorting genetic algorithm-II. Içinde 2014 International Conference on Smart Electric Grid (ISEG). (ss. 1–7). IEEE.
  • Yoshida, H., Kawata, K., Fukuyama, Y., vd. (2000). A Particle swarm optimization for reactive power and voltage control considering voltage security assessment. IEEE Transactions on Power Systems, 15, 1232–1239.
  • Yun Li, Kiam Heong Ang, Chong, G.C.Y. (2006). PID control system analysis and design. IEEE Control Systems Magazine, 26, 32–41.
  • Ziegler, J.G., Nichols, N.B. (1993). Optimum Settings for Automatic Controllers. Journal of Dynamic Systems, Measurement, and Control, 115, 220.
Yıl 2019, Cilt: 10 Sayı: 1, 1 - 12, 15.03.2019
https://doi.org/10.24012/dumf.396192

Öz

Kaynakça

  • Akça, E. (2015). Genel Atama Problemlerinin Grafik İşlemci Birimlerinin Üzerinde Çözümü. Ankara Üniversitesi.
  • Akyol, S., Alataş, B. (2012). Güncel Sürü Zekâsı Optimizasyon Algoritmaları. Nevşehir Üniversitesi Fen Bilimleri Enstitü Dergisi, 1, 36–50.
  • Alataş, B. (2007). Kaotik Haritalı Parçacık Sürü Optimizasyon Algoritmaları Geliştirme. Fırat Üniversitesi.
  • Campo, A.B. (2012). PID Control Design. Içinde MATLAB - A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1. InTech.
  • Chatterjee, S., Mukherjee, V. (2016). PID controller for automatic voltage regulator using teaching–learning based optimization technique. International Journal of Electrical Power & Energy Systems, 77, 418–429.
  • Coello Coello, C.A., Reyes-Sierra, M. (2006). Multi-Objective Particle Swarm Optimizers: A Survey of the State-of-the-Art. International Journal of Computational Intelligence Research, 2.
  • Coşkun, İsmail; Terzioğlu, H. (2007). Hız Performans Eğrisi Kullanılarak Kazanç (Pıd) Parametrelerinin Belirlenmesi. Selçuk-Teknik Dergisi, 6, 180–205.
  • Crnosija, P., Krishnan, R., Bjazic, T. (2006). Optimization of PM Brushless DC Motor Drive Speed Controller Using Modification of Ziegler-Nichols Methods Based on Bodé Plots. Içinde 2006 12th International Power Electronics and Motion Control Conference. (ss. 343–348). IEEE.Van Cutsem, T., Vournas, C. (2008). Voltage stability of electric power systems,
  • Dembicki, E., Chi, T. (1989). System analysis in calculation of cantilever retaining walls. International Journal for Numerical and Analytical Methods in Geomechanics, 13, 599–610. Available at: http://www.loc.gov/catdir/description/mh022/93039219.html.
  • Dorigo, M., Maniezzo, V., Colorni, a (1991). The ant system: An autocatalytic optimizing process. TR91-016, Politecnico di Milano, 1–21. Available at: http://lis.nsysu.edu.tw/exam/doctor/mana/infom/infom_93.pdf.
  • Eberhart, R.C., Shi, Y. (1998). Comparison between genetic algorithms and particle swarm optimization. Içinde Evolutionary Programming VII. (ss. 611–616).
  • Erkol, H.O. (2017). GA ve PSO ile Kontrol Parametrelerinin Optimizasyonu. Karaelmas Fen ve Mühendislik Dergisi, 7, 179–185.
  • Gaing, Z.L. (2004). A Particle Swarm Optimization Approach for Optimum Design of PID Controller in AVR System. IEEE Transactions on Energy Conversion, 19, 384–391. Available at: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1300705.
  • Gozde, H., Taplamacioglu, M.C. (2011). Comparative performance analysis of artificial bee colony algorithm for automatic voltage regulator (AVR) system. Journal of the Franklin Institute, 348, 1927–1946.
  • Joro, T., Korhonen, P., Wallenius, J. (1998). Structural comparison of data envelopment analysis and multiple objective linear programming. Management Science, 44, 962–970.
  • Kennedy, J., Eberhart, R. (1995). Particle swarm optimization. Neural Networks, 1995. Proceedings., IEEE International Conference on, 4, 1942–1948 c.4.
  • Keskintürk, T. (2006). Diferansiyel gelişim algoritması. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi, 5, 85–99.
  • Koski, J., Silvennoinen, R. (1987). Norm methods and partial weighting in multicriterion optimization of structures. International Journal for Numerical Methods in Engineering, 24, 1101–1121.
  • Kundur, P. (1994). Power system stability and control. McGraw-Hill, 45–138.
  • Maiti, D., Acharya, A., Chakraborty, M., vd. (2008). Tuning PID and Fractional PID Controllers using the Integral Time Absolute Error Criterion. Içinde Proceedings of the 2008 4th International Conference on Information and Automation for Sustainability, ICIAFS 2008. (ss. 457–462).
  • Marini, F., Walczak, B. (2015). Particle swarm optimization (PSO). A tutorial. Chemometrics and Intelligent Laboratory Systems, 149, 153–165.
  • Marler, R.T., Arora, J.S. (2005). Function-transformation methods for multi-objective optimization. Engineering Optimization, 37, 551–570.
  • Marler, R.T., Arora, J.S. (2004). Survey of multi-objective optimization methods for engineering. Structural and Multidisciplinary Optimization, 26, 369–395.
  • Marler, R.T., Arora, J.S. (2010). The weighted sum method for multi-objective optimization: New insights. Structural and Multidisciplinary Optimization, 41, 853–862.
  • Mayer, D.G., Kinghorn, B.P., Archer, A.A. (2005). Differential evolution – an easy and efficient evolutionary algorithm for model optimisation. Agricultural Systems, 83, 315–328.
  • Mohanty, P.K., Sahu, B.K., Panda, S. (2014). Tuning and Assessment of Proportional–Integral–Derivative Controller for an Automatic Voltage Regulator System Employing Local Unimodal Sampling Algorithm. Electric Power Components and Systems, 42, 959–969.
  • Montiel, O., Sepulveda, R., Melin, P., vd. (2007). Performance of a Simple Tuned Fuzzy Controller and a PID Controller on a DC Motor. Içinde 2007 IEEE Symposium on Foundations of Computational Intelligence. (ss. 531–537). IEEE.
  • Obika, M., Yamamoto, T. An evolutionary design of robust PID controllers. Içinde IEEE International Conference Mechatronics and Automation, 2005. (ss. 101–106). IEEE.
  • Ortakcı, Yasin; Göloğlu, C. (2012). Parçacık Sürü Optimizasyonu İle Küme Sayısının Belirlenmesi.
  • Ortakçı, Y. (2011). Parçacık Sürü Optimizasyonu Yöntemlerinin Uygulamalarla Karşılaştırılması. Karabük Üniversitesi.
  • Özdemir, M.T., Çelik, V. (2017). PI Kontrolörlü Otomatik Gerilim Regülasyon Sisteminin Kararlılık Analizi. SAÜ Fen Bilimleri Enstitüsü Dergisi, 21, 1–1. Available at: http://dergipark.gov.tr/doi/10.16984/saufenbilder.270251 [Erişim Temmuz 13, 2017].
  • Özdemir, M.T., Öztürk, D., Eke, İ., vd. (2015). Tuning of Optimal Classical and Fractional Order PID Parameters for Automatic Generation Control Based on the Bacterial Swarm Optimization. Içinde IFAC-PapersOnLine. (ss. 501–506).
  • Panda, R.C., Yu, C., Huang, H. (2004). PID tuning rules for SOPDT systems: review and some new results. ISA transactions, 43, 283–295.
  • Panda, S., Sahu, B.K., Mohanty, P.K. (2012). Design and performance analysis of PID controller for an automatic voltage regulator system using simplified particle swarm optimization. Journal of the Franklin Institute, 349, 2609–2625.
  • Rubaai, A., Young, P. (2011). EKF-Based PI-/PD-Like Fuzzy-Neural-Network Controller for Brushless Drives. IEEE Transactions on Industry Applications, 47, 2391–2401.
  • Saramago, S.F.P., Steffen Jr., V. (1998). Optimization of the Trajectory Plannung of Robot Manipulators Taking Into Account the Dynamics of the System. Mechanism and Machine Theory, 33, 883–894.
  • Shou-Rong Qi, Dong-Feng Wang, Pu Han, vd. Grey prediction based RBF neural network self-tuning PID control for turning process. Içinde Proceedings of 2004 International Conference on Machine Learning and Cybernetics (IEEE Cat. No.04EX826). (ss. 802–805). IEEE.
  • Storn, R., Price, K. (1995). Differential Evolution - A simple and efficient adaptive scheme for global optimization over continuous spaces. Technical report, International Computer Science Institute, 1–15.
  • Taylor, C. (1982). Power System Voltage Stability. IEEE Transactions on Power Apparatus and Systems, PAS-101.
  • Trautmann, H., Mehnen, J. (2009). Preference-based Pareto optimization in certain and noisy environments. Engineering Optimization, 41, 23–38.
  • Tutkun, N., Maden, D. (2010). Determination of the PID controller parameters for a DC shunt motor using the genetic algorithm method. Içinde 2010 National Conference on Electrical, Electronics and Computer Engineering, ELECO 2010.
  • Visioli, A. (2001). Tuning of PID controllers with fuzzy logic. IEE Proceedings - Control Theory and Applications, 148, 1–8.
  • Yegireddy, N.K., Panda, S. (2014). Design and performance analysis of PID controller for an AVR system using multi-objective non-dominated shorting genetic algorithm-II. Içinde 2014 International Conference on Smart Electric Grid (ISEG). (ss. 1–7). IEEE.
  • Yoshida, H., Kawata, K., Fukuyama, Y., vd. (2000). A Particle swarm optimization for reactive power and voltage control considering voltage security assessment. IEEE Transactions on Power Systems, 15, 1232–1239.
  • Yun Li, Kiam Heong Ang, Chong, G.C.Y. (2006). PID control system analysis and design. IEEE Control Systems Magazine, 26, 32–41.
  • Ziegler, J.G., Nichols, N.B. (1993). Optimum Settings for Automatic Controllers. Journal of Dynamic Systems, Measurement, and Control, 115, 220.
Toplam 46 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Elif Kılıç 0000-0002-3051-0496

Mahmut Temel Özdemir 0000-0002-5795-2550

Yayımlanma Tarihi 15 Mart 2019
Gönderilme Tarihi 16 Şubat 2018
Yayımlandığı Sayı Yıl 2019 Cilt: 10 Sayı: 1

Kaynak Göster

IEEE E. Kılıç ve M. T. Özdemir, “Güç Sistemlerindeki Optimum Otomatik Gerilim Regülasyonu için Çoklu Amaç Fonksiyonunun Belirlenmesi”, DÜMF MD, c. 10, sy. 1, ss. 1–12, 2019, doi: 10.24012/dumf.396192.
DUJE tarafından yayınlanan tüm makaleler, Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır. Bu, orijinal eser ve kaynağın uygun şekilde belirtilmesi koşuluyla, herkesin eseri kopyalamasına, yeniden dağıtmasına, yeniden düzenlemesine, iletmesine ve uyarlamasına izin verir. 24456