Araştırma Makalesi
BibTex RIS Kaynak Göster

İsale hatlarında deprem riskinin olasılıksal hesabı ve bir örnek uygulama

Yıl 2019, Cilt: 10 Sayı: 1, 397 - 408, 15.03.2019
https://doi.org/10.24012/dumf.538436

Öz

Yeryüzünde oluşabilecek depremlerden dolayı üstyapı kadar hayat yolları dediğimiz kanalizasyon, içmesuyu, elektrik hatları vb. gibi altyapılarda oluşabilecek hasarların önceden hesaplanması da depremin olumsuz etkilerini azaltabilmek için büyük önem arz etmektedir. Bu çalışmada, literatürde bulunan gömülü boru hatları için hasar bağıntıları araştırılarak, İstanbul’da meydana gelmesi beklenen depreme göre Ø2200mm çapındaki örnek bir isale hattı için borularda meydana gelebilecek hasar sayıları ve yerleri belirlenmiştir.
Dünya üzerinde yapılan çalışmalarda altyapı sistemlerinin deprem riskinin belirlenmesinde kırılganlık eğrileri, istenen noktadaki En Büyük Yer Hızı - PGV (Peak Ground Velocity), Kalıcı Yer Deformasyonu - PGD (Permanent Ground Deformation) gibi deprem parametrelerine karşın hasar sayısını veren bağıntılar olarak ifade edilmektedir. Bu kapsamda kırılganlık eğrilerini kullanarak hasar sayıları ve yerleri ile beraber isale hatlarında deprem riski ve haritası elde edilmiştir. Hesaplamalarda Gömülü boru hatlarında iyi korelasyon gösteren PGV parametresi kullanılmıştır. PGV hesabında ise literatürde zemin cinsi, fay tipi, uzaklığı, depremin aletsel büyüklüğünü dikkate alan Yer Hareketi Tahmin Bağıntılarından (YHTB, veya İngilizce’de GMPE-Ground Motion Prediction Equations) faydalanılmıştır. Deprem tehlikesinin analizinde SHARE projesinde kaydı tutulan depremler arasında İstanbul’a yakın depremler seçilerek etkin bir deprem kataloğu oluşturulmuştur. Ayrıca çalışılan bölgedeki boru hattının düğüm noktalarıyla belirli alt parçalarının hangi zemin cinsinde kaldığını belirlemek amacıyla yaklaşık 400×600 metrelik hücreler ile Vs kayma hızlarını bildiğimiz hücreler kullanılmıştır. Yukarıda bahsi geçen hesapları ve haritaları oluşturmak için bir yazılım hazırlanmış ve burada sunulan sonuçlar bu şekilde elde edilmiştir.

Kaynakça

  • ALA., (2001). Seismic fragility formulations for water systems,American Society of Civil Engineers ASCE and Federal Emergency Management Agency FEMA, www.americanlifelines.org, Jan.2002
  • Barenberg, M. E., (1988). Correlation of pipeline damage with groundmotions, J. Geotech. Engrg., 114(6), 706–711.
  • Eguchi, R. T., (1983). Seismic vulnerability models for underground pipes, Proc., Earthquake Behavior and Safety of Oil and Gas Storage Facilities, Buried Pipelines and Equipment, ASME, New York,368–373.
  • Eguchi, R. T., (1991). Seismic hazard input for lifeline systems, Struct. Safety, 10, 193–198.
  • Eidinger, J., (1998). Water distribution system, The Loma Prieta, California, Earthquake of October 17, 1989—Lifelines, A. J. Schiff, ed.,U.S. GPO, Washington, D.C., A63–A78.
  • FEMA, (1999). Earthquake loss estimation methodology HAZUS-MH—Technical manual, http://www.fema.gov/hazus ,2001.
  • Hwang, H., Lin, H., (1997). GIS-based evaluation of seismic performance of water delivery systems,Technical Rep. Prepared for CERI,Univ. of Memphis, Memphis, Tenn.
  • Isoyama, R., Ishida, E., Yune, K., Shirozu, T., (2000). Seismic damage estimation procedure for water supply pipelines, Proc., 12th World Conf. on Earthquake Engineering, CD-ROM, New Zealand Society for Earthquake Engineering, Auckland, New Zealand, 8.
  • Jeon, S. S., O’Rourke, T. D., (2005). Northridge earthquake effects on pipelines and residential buildings, Bull. Seismol. Soc. Am.,95(1), 294–318.
  • Katayama, T., Kubo, K.,Sato, N.,(1975). Earthquake damage to water and gas distribution systems, Proc., U.S. National Conf. On Earthquake Engineering, EERI, Oakland, Calif., 396–405.
  • Newmark, N.M., (1967). Problems in wave propagation in soil and rocks, Proc., Int. Symp. on Wave Propagation and Dynamic Properties of Earth Materials, University of New Mexico Press, Albuquerque,N.M.
  • O’Rourke, M. J., Ayala, G., (1993). Pipeline damage due to wave propagation, J. Geotech. Engrg., 119(9), 1490–1498.
  • O’Rourke, M. J.,Deyoe, E. , (2004). Seismic damage to segmented buried pipe, Earthquake Spectra, 20(4), 1167–1183.
  • O’Rourke, T. D., Jeon,S.S., (1999). Factors affecting the earthquake damage of water distribution systems, Proc., 5th U.S. Conf. on Lifeline Earthquake Engineering, ASCE, Reston, Va., 379–388.
  • Pineda, O., and Ordaz, M., (2003). Seismic vulnerability function for high-diameter buried pipelines: Mexico City’s primary water system Case, Proc., 2003 ASCE Int. Conf. on Pipeline Engineering and Construction, ASCE, Reston, Va.
  • Toprak S., Taşkın F., (2007). Estimation of earthquake damage to buried pipelines caused by ground shaking, Natural Hazards,Vol.40,pp 1-24.
  • Toprak, S., (1998). Earthquake Effects on Buried Lifeline Systems, Ph.D. Thesis, Cornell University, Ithaca, NY.
  • Akenori, S., (2006). Estimation of earthquake damage to urban systems, Structural Control and Health Monitoring, 13 454-471.
  • Adachi, T., Elingwood, B.R., (2010). Comparative assessment of civil infrastructure network performance under probabilistic and scenario earthquakes, Journal of Infrastructure Systems ,Vol.16,1-10.
  • Yoo, D.G., Kang, D. S., Kim, J. H., (2013). Seismic Reliability Assessment Model of Water Supply Networks, ‘World Enviromental and Water Congress 2013’, Showcasing the future ASCE 2013, 955-966.
  • Kameda, H., (2000). Engineering management of lifeline systems under earthquake risk, 12.WCEE Conference, 248-264.
  • Fragiadakis, M., Christodolou, S.E., (2014). ‘Seismic reliability assessment of urban water networks’, Earthquake Engineering & Structural Dynamics, (43) 357-374.
  • Porras, O.P., Schroeder, M.O., (2003). Seismic vulnerability funcion for high diameter buried pipelines Mexico City’s primary water system, New Pipeline Technologies,Security and Safety , 1145-1154
  • Pineda-Porras, O., Najafi M., (2010). Seismic damage estimation for buried pipelines: challenges after three decades of progress, Journal of Pipeline Systems Engineering and Practice, Vol.1 no. 1, 19-24.
  • Akkar, S., Bommer, J.J., (2007). Emprical prediction equations for peak ground velocity derived from strong-motion records from Europe and Middle East, Bulletin of the Seismological Society of America Vol.97 no.2,511-530.
  • Silva, V., Crowley, H., Pagani, M., Monelli, D., Pinho, R., (2013). Development of the Openquake Engine, the Global Earthquake Model’s open-source software for seismic risk assessment, Natural Hazards, DOI: 10.10007/s11069-013-0618-x.
  • Woessner J., Danciu L., Giardini D., Crowley H., Grunthal G., Valensise G., Arvidsson R., Basili R., Demircioğlu M., Hiemar S., Meletti C., Muson R., Rovida A., Sesetyan K., Stucchi M., (2015). The 2013 European Seismic Hazard Model – Key Components and Results, Bulletin of Earthquake Engineering 13, no.12, 3553-3596.
  • (www.ibb.gov.tr/tr-
  • TR/SubSites/DepremSite/PublishingImages/JICA-TUR.pdf).
Toplam 29 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Gökhan Çalım Bu kişi benim 0000-0002-2763-1975

İhsan Engin Bal 0000-0003-0919-9573

Gülten Gülay 0000-0003-3358-6450

Yayımlanma Tarihi 15 Mart 2019
Gönderilme Tarihi 20 Mayıs 2017
Yayımlandığı Sayı Yıl 2019 Cilt: 10 Sayı: 1

Kaynak Göster

IEEE G. Çalım, İ. E. Bal, ve G. Gülay, “İsale hatlarında deprem riskinin olasılıksal hesabı ve bir örnek uygulama”, DÜMF MD, c. 10, sy. 1, ss. 397–408, 2019, doi: 10.24012/dumf.538436.
DUJE tarafından yayınlanan tüm makaleler, Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır. Bu, orijinal eser ve kaynağın uygun şekilde belirtilmesi koşuluyla, herkesin eseri kopyalamasına, yeniden dağıtmasına, yeniden düzenlemesine, iletmesine ve uyarlamasına izin verir. 24456