Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2019, Cilt: 10 Sayı: 2, 511 - 522, 20.06.2019
https://doi.org/10.24012/dumf.506155

Öz

Kaynakça

  • Aslan, M., Davis, J. B., & Johnston, R. L. (2016). Global optimization of small bimetallic pd–co binary nanoalloy clusters: A genetic algorithm approach at the dft level. Physical Chemistry Chemical Physics, 18(9), 6676-6682.
  • Assumpção, M. H. M. T., da Silva, S. G., de Souza, R. F. B., Buzzo, G. S., Spinacé, E. V., Neto, A. O., & Silva, J. C. M. (2014). Direct ammonia fuel cell performance using ptir/c as anode electrocatalysts. International Journal of Hydrogen Energy, 39(10), 5148-5152.
  • Blöchl, P. E. (1994). Projector augmented-wave method. Physical review B, 50(24), 17953.
  • Boulbazine, M., Boudjahem, A.-G., & Bettahar, M. (2017). Stabilities, electronic and magnetic properties of Cu-doped Nickel clusters: A dft investigation. Molecular Physics, 115(20), 2495-2507.
  • Chaves, A. S., Rondina, G. G., Piotrowski, M. J., Tereshchuk, P., & Da Silva, J. L. F. (2014). The role of charge states in the atomic structure of Cun and Ptn (n = 2–14 atoms) clusters: A dft investigation. The Journal of Physical Chemistry A, 118(45), 10813-10821.
  • Choi, R., Choi, S. I., Choi, C. H., Nam, K. M., Woo, S. I., Park, J. T., & Han, S. W. (2013). Designed synthesis of well‐defined Pd@ Pt core–shell nanoparticles with controlled shell thickness as efficient oxygen reduction electrocatalysts. Chemistry-A European Journal, 19(25), 8190-8198.
  • Deaven, D. M., & Ho, K.-M. (1995). Molecular geometry optimization with a genetic algorithm. Physical review letters, 75(2), 288.
  • Derosa, P. A., Seminario, J. M., & Balbuena, P. B. (2001). Properties of small bimetallic ni− cu clusters. The Journal of Physical Chemistry A, 105(33), 7917-7925.
  • Du, P., Knowles, K., & Eisenberg, R. (2008). A homogeneous system for the photogeneration of hydrogen from water based on a platinum (ii) terpyridyl acetylide chromophore and a molecular cobalt catalyst. Journal of the American Chemical Society, 130(38), 12576-12577.
  • Ernzerhof, M., & Scuseria, G. E. (1999). Assessment of the perdew–burke–ernzerhof exchange-correlation functional. The Journal of chemical physics, 110(11), 5029-5036.
  • Fang, P.-P., Duan, S., Lin, X.-D., Anema, J. R., Li, J.-F., Buriez, O., Ren, B. (2011). Tailoring au-core pd-shell pt-cluster nanoparticles for enhanced electrocatalytic activity. Chemical Science, 2(3), 531-539.
  • Ferrando, R., Jellinek, J., & Johnston, R. L. (2008). Nanoalloys: From theory to applications of alloy clusters and nanoparticles. Chemical reviews, 108(3), 845-910.
  • Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Dabo, I. (2009). Quantum espresso: A modular and open-source software project for quantum simulations of materials. Journal of physics: Condensed matter, 21(39), 395502.
  • Ginatempo, B., Guo, G. Y., Temmerman, W. M., Staunton, J. B., & Durham, P. J. (1990). Electronic structure of ordered and disordered Cu alloys: Cu 3 Pd, Cu 3 Pt, and Cu 3 Au. Physical review B, 42(5), 2761-2767. Heiles, S., Logsdail, A. J., Schäfer, R., & Johnston, R. L. (2012). Dopant-induced 2d–3d transition in small Au-containing clusters: Dft-global optimisation of 8-atom Au–Ag nanoalloys. Nanoscale, 4(4), 1109-1115.
  • Ho, J., Ervin, K. M., & Lineberger, W. (1990). Photoelectron spectroscopy of metal cluster anions: Cu− n, Ag− n, and Au− n. The Journal of chemical physics, 93(10), 6987-7002.
  • Hu, W., Yuan, H., Chen, H., Wang, G., & Zhang, G. (2014). Structural and magnetic properties of CoPt clusters. Physics Letters A, 378(3), 198-206. Jaque, P., & Toro-Labbé, A. (2002). Characterization of copper clusters through the use of density functional theory reactivity descriptors. The Journal of chemical physics, 117(7), 3208-3218.
  • Johnston, R. L. (2003). Evolving better nanoparticles: Genetic algorithms for optimising cluster geometries. Dalton Transactions(22), 4193-4207. Li, C., Liu, T., He, T., Ni, B., Yuan, Q., & Wang, X. (2018). Composition-driven shape evolution to cu-rich ptcu octahedral alloy nanocrystals as superior bifunctional catalysts for methanol oxidation and oxygen reduction reaction. Nanoscale, 10(10), 4670-4674.
  • Li, X., Luo, L., Peng, F., Wang, H., & Yu, H. (2018). Enhanced activity of pt/cnts anode catalyst for direct methanol fuel cells using Ni2p as co-catalyst. Applied Surface Science, 434, 534-539. Lindholm, A., Currier, N. W., Fridell, E., Yezerets, A., & Olsson, L. (2007). Nox storage and reduction over pt based catalysts with hydrogen as the reducing agent: Influence of H2O and Co2. Applied Catalysis B: Environmental, 75(1-2), 78-87.
  • Mitchell, M. (1998). An introduction to genetic algorithms: MIT press.Mokkath, J. H. (2014). Magnetism, structure and chemical order in small copd clusters: A first-principles study. Journal of Magnetism and Magnetic Materials, 349, 109-115. Montejano-Carrizales, J., & Morán-López, J. (1990). Bimetallic nanostructures: I. General aspects and the ground state. Surface science, 239(1-2), 169-177.
  • Neugebauer, J., & Hickel, T. (2013). Density functional theory in materials science. Wiley Interdisciplinary Reviews: Computational Molecular Science, 3(5), 438-448.
  • Núñez-Valdez, M., Allahyari, Z., Fan, T., & Oganov, A. R. (2018). Efficient technique for computational design of thermoelectric materials. Computer Physics Communications, 222, 152-157. Perdew, J. P., Burke, K., & Wang, Y. (1996). Generalized gradient approximation for the exchange-correlation hole of a many-electron system. Physical review B, 54(23), 16533.
  • Rodemerck, U., Baerns, M., Holena, M., & Wolf, D. (2004). Application of a genetic algorithm and a neural network for the discovery and optimization of new solid catalytic materials. Applied Surface Science, 223(1-3), 168-174.
  • Sharifpour, E., Ghaedi, M., Nasiri Azad, F., Dashtian, K., Hadadi, H., & Purkait, M. (2018). Zinc oxide nanorod‐loaded activated carbon for ultrasound‐assisted adsorption of safranin o: Central composite design and genetic algorithm optimization. Applied Organometallic Chemistry, 32(2).
  • Song, R., & Zhang, Q. (2001). Heat treatment optimization for 7175 aluminum alloy by genetic algorithm. Materials Science and Engineering: C, 17(1-2), 133-137.
  • Sosa-Hernández, E. M., Montejano-Carrizales, J. M., & Alvarado-Leyva, P. G. (2017). Global minimum structures, stability and electronic properties of small fe x cu y (x + y ≤ 5) bimetallic clusters: A dft study. The European Physical Journal D, 71(11), 284.
  • Spasov, V. A., Lee, T.-H., & Ervin, K. M. (2000). Threshold collision-induced dissociation of anionic copper clusters and copper cluster monocarbonyls. The Journal of chemical physics, 112(4), 1713-1720. Tao, F., Grass, M. E., Zhang, Y., Butcher, D. R., Renzas, J. R., Liu, Z., Somorjai, G. A. (2008). Reaction-driven restructuring of Rh-Pd and Pt-Pd core-shell nanoparticles. Science, 322(5903), 932-934.
  • Tian, R., Shen, S., Zhu, F., Luo, L., Yan, X., Wei, G., & Zhang, J. (2018). Sandwich‐structured icosahedral PtNi alloy nanocrystalline electrocatalyst: From the growth mechanism to its oxygen reduction activity. ChemSusChem.
  • Tran, D. T., & Johnston, R. L. (2011). Study of 40-atom pt–au clusters using a combined empirical potential-density functional approach. Paper presented at the Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences.
  • Wales, D. J., & Doye, J. P. (1997). Global optimization by basin-hopping and the lowest energy structures of lennard-jones clusters containing up to 110 atoms. The Journal of Physical Chemistry A, 101(28), 5111-5116.
  • Yang, S. H., Drabold, D. A., Adams, J. B., Ordejón, P., & Glassford, K. (1997). Density functional studies of small platinum clusters. Journal of physics: Condensed matter, 9(5), L39.
  • York, J. T., Llobet, A., Cramer, C. J., & Tolman, W. B. (2007). Heterobimetallic dioxygen activation: Synthesis and reactivity of mixed Cu− Pd and Cu− Pt bis (μ-oxo) complexes. Journal of the American Chemical Society, 129(25), 7990-7999.
  • Yu, F., Xu, X., Baddeley, C. J., Bellabarba, R. M., Lignier, P., Tooze, R. P., Zhou, W. (2014). Surface ligand mediated growth of CuPt nanorods. CrystEngComm, 16(9), 1714-1723.

Bimetalik CuPt Nanoparçacıkların Stabilitesi, Yapısal ve Elektronik Özellikleri

Yıl 2019, Cilt: 10 Sayı: 2, 511 - 522, 20.06.2019
https://doi.org/10.24012/dumf.506155

Öz

Pt
temelli Nanopaçacıklar oksijen azaltma reaksiyonları, polimer elektrolit
membranlı yakıt pillerinde metanol oksidasyonu, heterojen NOx
azaltımı ve fotokatalitik olarak hidrojen üretimi gibi uygulamalarda yaygın
olarak kullanılmaktadır. Bu çalışmada, bimetalik CuPt nanoparçacıkların süper
bilgisayarlar kullanarak modelleme ve simülasyonunu yaptık. Yöntem olarak
genetik algoritma tabanlı yoğunluk fonksiyonel teorisini kullandık. CuPt
nanoparçacıklarının stabilitesi, yapısal ve elektronik özellikleri ayrıntılı
bir şekilde incelendi. Ayrıca nanopaçacıkların geometrik yapıları modellendi.
Geometrik yapının belirlenmesi ve değiştirilme kabiliyeti katalizör olarak
tasarlanan malzemenin aktif olan yüzeyini ayarlanması için önemlidir. Elde
edilen sonuçlara göre Cu elementi yapının merkezinde, Pt elementi yapının
kenarında durma eğiliminde olduğunu söyleyebiliriz. Ayrıca Cu3Pt2
nanoparçacığın kısmi yoğunluk durumu ve XRD analizleri hesaplandı. İlk aşama
olarak, Pt katalizör maliyetlerinin azaltılması için Pt tabanlı Cu
nanoparçacıklarının alternatif olarak düşünülebileceğini öneriyoruz.  

Kaynakça

  • Aslan, M., Davis, J. B., & Johnston, R. L. (2016). Global optimization of small bimetallic pd–co binary nanoalloy clusters: A genetic algorithm approach at the dft level. Physical Chemistry Chemical Physics, 18(9), 6676-6682.
  • Assumpção, M. H. M. T., da Silva, S. G., de Souza, R. F. B., Buzzo, G. S., Spinacé, E. V., Neto, A. O., & Silva, J. C. M. (2014). Direct ammonia fuel cell performance using ptir/c as anode electrocatalysts. International Journal of Hydrogen Energy, 39(10), 5148-5152.
  • Blöchl, P. E. (1994). Projector augmented-wave method. Physical review B, 50(24), 17953.
  • Boulbazine, M., Boudjahem, A.-G., & Bettahar, M. (2017). Stabilities, electronic and magnetic properties of Cu-doped Nickel clusters: A dft investigation. Molecular Physics, 115(20), 2495-2507.
  • Chaves, A. S., Rondina, G. G., Piotrowski, M. J., Tereshchuk, P., & Da Silva, J. L. F. (2014). The role of charge states in the atomic structure of Cun and Ptn (n = 2–14 atoms) clusters: A dft investigation. The Journal of Physical Chemistry A, 118(45), 10813-10821.
  • Choi, R., Choi, S. I., Choi, C. H., Nam, K. M., Woo, S. I., Park, J. T., & Han, S. W. (2013). Designed synthesis of well‐defined Pd@ Pt core–shell nanoparticles with controlled shell thickness as efficient oxygen reduction electrocatalysts. Chemistry-A European Journal, 19(25), 8190-8198.
  • Deaven, D. M., & Ho, K.-M. (1995). Molecular geometry optimization with a genetic algorithm. Physical review letters, 75(2), 288.
  • Derosa, P. A., Seminario, J. M., & Balbuena, P. B. (2001). Properties of small bimetallic ni− cu clusters. The Journal of Physical Chemistry A, 105(33), 7917-7925.
  • Du, P., Knowles, K., & Eisenberg, R. (2008). A homogeneous system for the photogeneration of hydrogen from water based on a platinum (ii) terpyridyl acetylide chromophore and a molecular cobalt catalyst. Journal of the American Chemical Society, 130(38), 12576-12577.
  • Ernzerhof, M., & Scuseria, G. E. (1999). Assessment of the perdew–burke–ernzerhof exchange-correlation functional. The Journal of chemical physics, 110(11), 5029-5036.
  • Fang, P.-P., Duan, S., Lin, X.-D., Anema, J. R., Li, J.-F., Buriez, O., Ren, B. (2011). Tailoring au-core pd-shell pt-cluster nanoparticles for enhanced electrocatalytic activity. Chemical Science, 2(3), 531-539.
  • Ferrando, R., Jellinek, J., & Johnston, R. L. (2008). Nanoalloys: From theory to applications of alloy clusters and nanoparticles. Chemical reviews, 108(3), 845-910.
  • Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Dabo, I. (2009). Quantum espresso: A modular and open-source software project for quantum simulations of materials. Journal of physics: Condensed matter, 21(39), 395502.
  • Ginatempo, B., Guo, G. Y., Temmerman, W. M., Staunton, J. B., & Durham, P. J. (1990). Electronic structure of ordered and disordered Cu alloys: Cu 3 Pd, Cu 3 Pt, and Cu 3 Au. Physical review B, 42(5), 2761-2767. Heiles, S., Logsdail, A. J., Schäfer, R., & Johnston, R. L. (2012). Dopant-induced 2d–3d transition in small Au-containing clusters: Dft-global optimisation of 8-atom Au–Ag nanoalloys. Nanoscale, 4(4), 1109-1115.
  • Ho, J., Ervin, K. M., & Lineberger, W. (1990). Photoelectron spectroscopy of metal cluster anions: Cu− n, Ag− n, and Au− n. The Journal of chemical physics, 93(10), 6987-7002.
  • Hu, W., Yuan, H., Chen, H., Wang, G., & Zhang, G. (2014). Structural and magnetic properties of CoPt clusters. Physics Letters A, 378(3), 198-206. Jaque, P., & Toro-Labbé, A. (2002). Characterization of copper clusters through the use of density functional theory reactivity descriptors. The Journal of chemical physics, 117(7), 3208-3218.
  • Johnston, R. L. (2003). Evolving better nanoparticles: Genetic algorithms for optimising cluster geometries. Dalton Transactions(22), 4193-4207. Li, C., Liu, T., He, T., Ni, B., Yuan, Q., & Wang, X. (2018). Composition-driven shape evolution to cu-rich ptcu octahedral alloy nanocrystals as superior bifunctional catalysts for methanol oxidation and oxygen reduction reaction. Nanoscale, 10(10), 4670-4674.
  • Li, X., Luo, L., Peng, F., Wang, H., & Yu, H. (2018). Enhanced activity of pt/cnts anode catalyst for direct methanol fuel cells using Ni2p as co-catalyst. Applied Surface Science, 434, 534-539. Lindholm, A., Currier, N. W., Fridell, E., Yezerets, A., & Olsson, L. (2007). Nox storage and reduction over pt based catalysts with hydrogen as the reducing agent: Influence of H2O and Co2. Applied Catalysis B: Environmental, 75(1-2), 78-87.
  • Mitchell, M. (1998). An introduction to genetic algorithms: MIT press.Mokkath, J. H. (2014). Magnetism, structure and chemical order in small copd clusters: A first-principles study. Journal of Magnetism and Magnetic Materials, 349, 109-115. Montejano-Carrizales, J., & Morán-López, J. (1990). Bimetallic nanostructures: I. General aspects and the ground state. Surface science, 239(1-2), 169-177.
  • Neugebauer, J., & Hickel, T. (2013). Density functional theory in materials science. Wiley Interdisciplinary Reviews: Computational Molecular Science, 3(5), 438-448.
  • Núñez-Valdez, M., Allahyari, Z., Fan, T., & Oganov, A. R. (2018). Efficient technique for computational design of thermoelectric materials. Computer Physics Communications, 222, 152-157. Perdew, J. P., Burke, K., & Wang, Y. (1996). Generalized gradient approximation for the exchange-correlation hole of a many-electron system. Physical review B, 54(23), 16533.
  • Rodemerck, U., Baerns, M., Holena, M., & Wolf, D. (2004). Application of a genetic algorithm and a neural network for the discovery and optimization of new solid catalytic materials. Applied Surface Science, 223(1-3), 168-174.
  • Sharifpour, E., Ghaedi, M., Nasiri Azad, F., Dashtian, K., Hadadi, H., & Purkait, M. (2018). Zinc oxide nanorod‐loaded activated carbon for ultrasound‐assisted adsorption of safranin o: Central composite design and genetic algorithm optimization. Applied Organometallic Chemistry, 32(2).
  • Song, R., & Zhang, Q. (2001). Heat treatment optimization for 7175 aluminum alloy by genetic algorithm. Materials Science and Engineering: C, 17(1-2), 133-137.
  • Sosa-Hernández, E. M., Montejano-Carrizales, J. M., & Alvarado-Leyva, P. G. (2017). Global minimum structures, stability and electronic properties of small fe x cu y (x + y ≤ 5) bimetallic clusters: A dft study. The European Physical Journal D, 71(11), 284.
  • Spasov, V. A., Lee, T.-H., & Ervin, K. M. (2000). Threshold collision-induced dissociation of anionic copper clusters and copper cluster monocarbonyls. The Journal of chemical physics, 112(4), 1713-1720. Tao, F., Grass, M. E., Zhang, Y., Butcher, D. R., Renzas, J. R., Liu, Z., Somorjai, G. A. (2008). Reaction-driven restructuring of Rh-Pd and Pt-Pd core-shell nanoparticles. Science, 322(5903), 932-934.
  • Tian, R., Shen, S., Zhu, F., Luo, L., Yan, X., Wei, G., & Zhang, J. (2018). Sandwich‐structured icosahedral PtNi alloy nanocrystalline electrocatalyst: From the growth mechanism to its oxygen reduction activity. ChemSusChem.
  • Tran, D. T., & Johnston, R. L. (2011). Study of 40-atom pt–au clusters using a combined empirical potential-density functional approach. Paper presented at the Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences.
  • Wales, D. J., & Doye, J. P. (1997). Global optimization by basin-hopping and the lowest energy structures of lennard-jones clusters containing up to 110 atoms. The Journal of Physical Chemistry A, 101(28), 5111-5116.
  • Yang, S. H., Drabold, D. A., Adams, J. B., Ordejón, P., & Glassford, K. (1997). Density functional studies of small platinum clusters. Journal of physics: Condensed matter, 9(5), L39.
  • York, J. T., Llobet, A., Cramer, C. J., & Tolman, W. B. (2007). Heterobimetallic dioxygen activation: Synthesis and reactivity of mixed Cu− Pd and Cu− Pt bis (μ-oxo) complexes. Journal of the American Chemical Society, 129(25), 7990-7999.
  • Yu, F., Xu, X., Baddeley, C. J., Bellabarba, R. M., Lignier, P., Tooze, R. P., Zhou, W. (2014). Surface ligand mediated growth of CuPt nanorods. CrystEngComm, 16(9), 1714-1723.
Toplam 32 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Mikail Aslan 0000-0003-0578-5049

Yayımlanma Tarihi 20 Haziran 2019
Gönderilme Tarihi 31 Aralık 2018
Yayımlandığı Sayı Yıl 2019 Cilt: 10 Sayı: 2

Kaynak Göster

IEEE M. Aslan, “Bimetalik CuPt Nanoparçacıkların Stabilitesi, Yapısal ve Elektronik Özellikleri”, DÜMF MD, c. 10, sy. 2, ss. 511–522, 2019, doi: 10.24012/dumf.506155.
DUJE tarafından yayınlanan tüm makaleler, Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır. Bu, orijinal eser ve kaynağın uygun şekilde belirtilmesi koşuluyla, herkesin eseri kopyalamasına, yeniden dağıtmasına, yeniden düzenlemesine, iletmesine ve uyarlamasına izin verir. 24456