Araştırma Makalesi
BibTex RIS Kaynak Göster

Evrişimsel sinir ağları kullanılarak normal ve göğüs kanseri hücreleri içeren genomların sınıflandırılması

Yıl 2020, Cilt: 11 Sayı: 1, 81 - 90, 27.03.2020
https://doi.org/10.24012/dumf.610879

Öz

Geniş veri setlerinden anlamlı ve doğru bilgilerin çıkarılması biyoinformatik çalışmalarında önemli bir unsurdur. Karşılaşılan en önemli zorluklardan biri, kanser ile ilişkili olan genomik işaretçilerin tespitidir. Bu problemin çözümü için kullanılan genom dizilimlerinin sayısallaştırılması ve dizilimlerden öznitelik çıkarımı, sorunun çözümünde oldukça etkilidir. DNA dizilimlerinin sayısallaştırılması için literatürde var olan çeşitli yöntemler kullanılmaktadır. Öznitelik çıkarımında da, önceki çalışmalarda, belirli istatistiksel parametreler hesaplanmakta ve bu parametreler üzerinden bir ayrım gerçekleştirilmektedir. Ayrıca, hesaplanan parametreler uzmanın tecrübesine dayalı olarak seçilmektedir. Bu çalışmada önerilen yaklaşımda ise, yeni bir haritalama yöntemi olan Entropi tabanlı sayısal haritalama ile DNA dizilimleri sayısal sinyallere dönüştürülmüş ve daha sonra sayısallaştırılan DNA dizilimlerinden Evrişimsel Sinir Ağları (ESA) kullanılarak öznitelik çıkarımı yapılmıştır. ESA modelleri kullanarak yapılan öznitelik çıkarma işleminde sistem, veriden kendisi öznitelik çıkarmaktadır. Daha sonra ESA modellerinden elde edilen öznitelikler Destek Vektör Makinesi (DVM) ve k-En yakın komşu algoritması (k-NN) ile sınıflandırılmıştır. Bu çalışmada, yukarıda bahsedilen her iki yaklaşım kullanılarak DNA dizilerinden göğüs kanseri ve sağlıklı gen dizilimi gruplarının sınıflandırması için yeni bir yöntem önerilmektedir. Önerilen yöntem ile ulaşılan sınıflandırma doğruluğu %85.97’dir. Elde edilen sonuçlar, derin öğrenmenin genom analizinde genlerin sınıflandırılması, yeni genlerin bulunması gibi uygulamalarda etkili bir yöntem olabileceğini göstermektedir. 

Kaynakça

  • Bordoloi, H., Roy, D., Nirmala, S.R. (2018). A Framework for Codon Based Analysis to detect abnormalities responsible for Esophagus Cancer using Soft Computing Tool, 2018 5th International Conference on Signal Processing and Integrated Networks (SPIN), 170-174, Noida, India.
  • Chakraborty S., Gupta V. (2016). DWT based cancer identification using EIIP, 2016 Second International Conference on Computational Intelligence & Communication Technology (CICT), 718-723, Ghaziabad, India.
  • Cheon H., Son J-H. (2016) Terahertz molecular resonance of cancer DNA , Scientific Reports, vol:6, Article number:37103.
  • Das, B., ve Turkoglu, I. (2018). A novel numerical mapping method based on entropy for digitizing DNA sequences, Neural Comput. Appl. 29,8, 207-215.
  • Daş, B. (2018). Development of New Approaches Based On Signal Processing For Disease Diagnosis From Dna Sequences, PhD Thesis, Fırat University, Graduate School of Natural and Applied Sciences, Elazig, Turkey.
  • Duda, R.O., Hart, P.E., Stork, D.G. (2000). Pattern Classification, Second, Wiley-Interscience New York, NY, USA.
  • Gopalakrishnan, K., Khaitan, S.K., Choudhary, A., Agrawal, A. (2017). Deep Convolutional Neural Networks with transfer learning for computer vision-based data-driven pavement distress detection, Constr. Build. Mater. 157, 322–330.
  • Hasan, M.J., Islam, M.M.M. , Kim, J.-M. (2019). Acoustic spectral imaging and transfer learning for reliable bearing fault diagnosis under variable speed conditions, Measurement, 138, 620–631.
  • Khazaee, A., Ebrahimzadeh, A., (2010). Classification of electrocardiogram signals with support vector machines and genetic algorithms using power spectral features, Biomed. Signal Process. Control. 5(4), 252-263.
  • Karci, A. (2016). Fractional order entropy: New perspectives, Optik, 127,20, 9172-9177.
  • Leung KS, Lee KH, Wang JF, Ng EY, Chan HL, Tsui SK, Mok TS, Tse PC, Sung JJ. (2011). Data Mining on DNA Sequences of Hepatitis B Virus, IEEE/ACM Transactions on Computational Biology And Bioinformatics, 8,2, 428-440.
  • Mayilvaganan M., Rajamani R. (2014), Analysis of nucleotide sequence with normal and affected cancer liver cells using Hidden Markov model, 2014 IEEE International Conference on Computational Intelligence and Computing Research, Coimbatore, India.
  • Meng T, Soliman AT, Shyu ML, Yang Y, Chen SC, Iyengar SS, Yordy JS, Iyengar P., (2013). Wavelet Analysis in Current Cancer Genome Research: A Survey, IEEE/ACM Transactions on Computational Biology And Bioinformatics, 10, 6, 1442-1459.
  • Naeem SM., Mabrouk, MS., Eldosoky, MA. (2017) Detecting genetic variants of Breast cancer using different power spectrum methods, 13th International Computer Engineering Conference (ICENCO), 147-153, Cairo, Egypt.
  • NCBI Genbankası: https://www.ncbi.nlm.nih.gov (01 Haziran 2019).
  • Nurdin A. D. binti S. and Isa M. N. bin M. (2016). Development and validation of BRCA1 for Next Generation Sequencing (NGS), 2016 IEEE EMBS Conference on Biomedical Engineering and Sciences (IECBES), 702-706, Kuala Lumpur, Malaysia.
  • Simonyan, K., Zisserman, A. (2015). Very Deep Convolutional Networks For Large-Scale Image Recognition. arXiv:1409.1556v6.
  • Stratton, M.R., Campbell, P.J. and Futreal, P.A. (2009). The Cancer Genome. Nature, 458,7239, 719-724.
  • Toraman, S., Girgin, M., Üstündağ, B., Türkoğlu, İ. (2019). Classication of the Likelihood of Colon Cancer With Machine Learning Techniques Using FTIR Signals Obtained From Plasma, Turk J Elec Eng & Comp Sci, 27, 1765-1779.
  • Toraman, S. ve Türkoğlu İ., (2018). Kolon Kanseri Hastaları ve Sağlıklı Kişilerin FTIR Spektrogram Görüntülerinin Derin Öğrenme ile Sınıflandırılması, Fırat Üniv. Müh. Bil. Dergisi, 30(2), 115-120.
  • Tuncer, SA., Akılotu, B., Toraman, S. (2019). A deep learning-based decision support system for diagnosis of osas using ptt signals, Medical Hypotheses, 127, 15-22.
  • Ullah, I., Hussain, M., Qazi, E.-H., Aboalsamh, H. (2018). An automated system for epilepsy detection using EEG brain signals based on deep learning approach, Expert Syst. Appl. 107, 61–71.
  • Yildirim, Ö. (2019). ECG Beat Detection and Classification System Using Wavelet Transform and Online Sequential ELM, Journal of Mechanics in Medicine and Biology 19, 1, 1940008.
Toplam 23 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Suat Toraman 0000-0002-7568-4131

Bihter Daş 0000-0002-2498-3297

Yayımlanma Tarihi 27 Mart 2020
Gönderilme Tarihi 26 Ağustos 2019
Yayımlandığı Sayı Yıl 2020 Cilt: 11 Sayı: 1

Kaynak Göster

IEEE S. Toraman ve B. Daş, “Evrişimsel sinir ağları kullanılarak normal ve göğüs kanseri hücreleri içeren genomların sınıflandırılması”, DÜMF MD, c. 11, sy. 1, ss. 81–90, 2020, doi: 10.24012/dumf.610879.
DUJE tarafından yayınlanan tüm makaleler, Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır. Bu, orijinal eser ve kaynağın uygun şekilde belirtilmesi koşuluyla, herkesin eseri kopyalamasına, yeniden dağıtmasına, yeniden düzenlemesine, iletmesine ve uyarlamasına izin verir. 24456