Araştırma Makalesi
BibTex RIS Kaynak Göster

Ateş Böceği Algoritması Tabanlı PI Denetleyici Kullanarak Üç Fazlı Vienna Doğrultucunun Dinamik Performansının İncelenmesi

Yıl 2020, Cilt: 11 Sayı: 3, 933 - 944, 30.09.2020
https://doi.org/10.24012/dumf.699156

Öz

Bu çalışmada, üç fazlı Vienna doğrultucunun DA-Bara geriliminin denetimi için metasezgisel algoritmalardan biri olan Ateş Böceği Algoritması (ABA) tabanlı bir PI denetleyici yapısı önerilmiştir. ABA-PI adı verilen önerilen denetleyici yapısı içerisindeki PI denetleyicinin kazanç katsayıları ABA ile belirlenmiştir. ABA-PI denetleyicinin giriş referansı, giriş gerilimi ve yük değişimlerine karşı dinamik performansını incelemek için Matlab/Simulink ortamında kullanılarak benzetim çalışmaları yapılmıştır. Yapılan benzetim çalışmaları sonucunda önerilen ABA-PI denetleyicinin tüm benzetim koşulları altında klasik PI denetleyiciye göre daha başarılı olduğu doğrulanmıştır.

Kaynakça

  • Bueno, E. J., C´obreces, S., Rodr´ıguez, F. J., Hern´andez, A. Espinosa, F., (2008). Design of a back-to-back NPC converter interface for wind turbines with squirrel-cage induction generator, IEEE Trans. Energy Convers., 23, 3, 932–945.
  • Baev, S., Shtessel, Y., Sheffield, M., (2008). Sliding Mode Control of a Unity Power Factor 3-Phase AC/DC Boost Converter, IEEE Southeast Conference, 491-496.
  • Coteli, R., Acikgoz, H., Ucar, F., Dandil, B., (2017). Design and implementation of Type-2 fuzzy neural system controller for PWM rectifiers, International Journal of Hydrogen Energy, 42, 32, 20759-20771.
  • Acikgoz, H., Kececioglu, O. F., Gani, A., Yildiz, C., Sekkeli, M., (2016). Improved control configuration of PWM rectifiers based on neuro-fuzzy controller, SpringerPlus, 5, 1, 1142.
  • Rodriguez, J. R., Dixon, J. W., Espinoza, J. R., Pontt, J., Lezana, P., (2005). PWM regenerative rectifiers: state of the art, IEEE Transactions on Industrial Electronics, 52, 1, 5-22.
  • Kolar, J. W., Friedli,T., (2013). The Essence of Three-Phase PFC Rectifier Systems - Part I, IEEE Transactions on Power Electronics, 28, 1, 176-198.
  • Friedli, T., Hartmann, M., Kolar, J. W., (2014). The Essence of Three-Phase PFC Rectifier Systems - Part II, IEEE Transactions on Power Electronics, 29, 2, 543-560.
  • Zhang, X., Wang, Q., Burgos, R., Boroyevich, D., (2015). Discontinuous pulse width modulation methods with neutral point voltage balancing for three phase Vienna rectifiers, IEEE Energy Conversion Congress and Exposition (ECCE), 225-232.
  • Kolar, J.W., Zach, F.C., (1997). A novel three-phase utility interface minimizing line current harmonics of high-power telecommunications rectifier modules, IEEE Transactions on Industrial Electronics, 44, 4, 456-467.
  • Reddy, D., Ramasamy, S., (2018). Design of RBFN Controller Based Boost Type Vienna Rectifier for Grid-Tied Wind Energy Conversion System, IEEE Access, 6, 3167-3175.
  • Liu, J., Wang, B., Zhao, H., Yang, D., Chen, Z., Yi, B., Li, M., (2018). A wind energy conversion system based on full scale VIENNA rectifier and small-scale STATCOM, 13th IEEE Conference on Industrial Electronics and Applications (ICIEA), 1431-1436.
  • Anderson, J. A., Haider, M., Bortis, D., Kolar, J. W., Kasper, M., Deboy, G., (2019). New Synergetic Control of a 20kW Isolated VIENNA Rectifier Front-End EV Battery Charger, 20th Workshop on Control and Modeling for Power Electronics (COMPEL), 1-8.
  • Yang, X. S., (2008). Nature-Inspired Metaheuristic Algorithms, Luniver Press, Cambridge, U.K.
  • Yang, X. S., Hosseini, S. S. S., Gandomi, A. H., (2012). Firefly algorithm for solving non-convex economic dispatch problems with valve loading effect, Applied Soft Computing, 12, 1180-1186.
  • Chandrasekaran, K., Simon, S. P., Padhy, N. P., (2013). Binary real coded firefly algorithm for solving unit commitment problem, Information Sciences, 249, 67-84.
  • Senthilnath, J., Omkar, S. N., Mani, V., (2011). Clustering using firefly algorithm: performance study, Swarm and Evolutionary Computation, 1, 164-171.
  • Konstantinov, S. V., Baryshnikov, A. A., (2017). Comparative Analysis of Evolutionary Algorithms for the Problem of Parametric Optimization of PID Controllers, Procedia Computer Science, 103, 100-107.
  • Kommula, B. N., Kota, V. R., (2020). Direct instantaneous torque control of Brushless DC motor using firefly Algorithm based fractional order PID controller, Journal of King Saud University - Engineering Sciences, 32, 2, 133-140.
  • Pradhan, P. C., Sahu, R. K., Panda, S., (2016) Firefly algorithm optimized fuzzy PID controller for AGC of multi-area multi-source power systems with UPFC and SMES, Engineering Science and Technology, an International Journal, 19, 1, 338-354.
  • Lai, R., Wang, F., Burgos, R., Boroyevich, D., Jiang, D., Zhang, D., (2009). Average Modeling and Control Design for Vienna-Type Rectifiers Considering the DC-Link Voltage Balance, IEEE Transactıons on Power Electronics, 24, 11, 2509-2522.
  • Aiello, G., Cacciato, M., Scarcella, G., Scelba, G., Gennaro, F., Aiello, N., (2019). Real-time emulation of a three-phase Vienna rectifier with DC voltage control and power factor correction, Electrical Engineering, https://doi.org/10.1007/s00202-019-00776-y.
  • Yu F., Liu X., Zhang X., Zhu Z., (2019). Model Predictive Virtual-Flux Control of Three-Phase Vienna Rectifier Without Voltage Sensors, IEEE Access, 7, 169338- 169349.
  • Li, X., Sun, Y., Wang, H., Su, M., Huang, S., (2018). A Hybrid Control Scheme for Three-Phase Vienna Rectifiers, IEEE Transactions on Power Electronics, 33, 1, 629-640.
  • Kedjar, B., Kanaan, H.Y., Al-Haddad, K,. (2014). Vienna Rectifier with Power Quality Added Function, IEEE Transactions on Industrial Electronics, 61, 8, 3847-3856.
  • Aissaa, O., Moulahouma, S., Colak, I., Babesc, B., Kabacheaa, N., (2017). Design and real time implementation of three-phase three switchesthree levels Vienna rectifier based on intelligent controllers, Applied Soft Computing, 56,158-172.
  • Dang, C., Tong, X., Yin, J., Huang, J., Xu, Y. (2017). The neutral point-potential and current model predictive control method for Vienna rectifier, Journal of the Franklin Institute, 354, 7605-7623.
  • Sundareswaran, K., Peddapati, S., Palani, S., (2014). MPPT of PV Systems Under Partial Shaded Conditions Through a Colony of Flashing Fireflies, IEEE Transactions on Energy Conversion, 29, 2, 463-472.
  • Belkacem, R., Benzıd, R., Bouguechal N. (2017). Multilevel inverter with optimal THD through the firefly algorithm, Archives of Electrical Engineering, 66, 1, 141-154.
  • Demirdelen, T., (2018). Kuru Tip Transformatör Optimizasyonuna Yeni Bir Yaklaşım: Ateş Böceği Algoritması, Çukurova Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 33, 1, 87-96.
  • Merugumalla, M.K., Navuri, P.K. (2018). PSO and firefly algorithms based control of BLDC motor drive. 2nd International Conference on Inventive Systems and Control (ICISC), 994-999.
Toplam 30 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Ö. Fatih Keçecioğlu 0000-0001-7004-4947

Hakan Açıkgöz

Yayımlanma Tarihi 30 Eylül 2020
Gönderilme Tarihi 5 Mart 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 11 Sayı: 3

Kaynak Göster

IEEE Ö. F. Keçecioğlu ve H. Açıkgöz, “Ateş Böceği Algoritması Tabanlı PI Denetleyici Kullanarak Üç Fazlı Vienna Doğrultucunun Dinamik Performansının İncelenmesi”, DÜMF MD, c. 11, sy. 3, ss. 933–944, 2020, doi: 10.24012/dumf.699156.
DUJE tarafından yayınlanan tüm makaleler, Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır. Bu, orijinal eser ve kaynağın uygun şekilde belirtilmesi koşuluyla, herkesin eseri kopyalamasına, yeniden dağıtmasına, yeniden düzenlemesine, iletmesine ve uyarlamasına izin verir. 24456