Araştırma Makalesi
BibTex RIS Kaynak Göster

Henry Gaz Çözünürlük Optimizasyonu ile Uçak Eğim Kontrol Sistemi için Etkin Kontrolör Tasarımı

Yıl 2020, Cilt: 11 Sayı: 3, 953 - 964, 30.09.2020
https://doi.org/10.24012/dumf.709449

Öz

Bu çalışma ile sezgisel-üstü algoritmalardan olan Henry gaz çözünürlük optimizasyonu (HGSO) kullanılarak oransal, integral ve türevsel (PID) bir kontrolöre ait parametreler bir uçağın alçalma/yükselme (eğim) açısına ait sistemin kontrolü için optimum olacak şekilde ayarlanmıştır. Kullanılan bu yaklaşım literatürde ilk defa önerilmekte olup, sistemin performans analizi için istatistiksel test, geçici hal cevabı, kutup-sıfır haritası ve bode gibi analizler gerçekleştirilmiştir. Söz konusu bu analizler aynı zamanda literatürde son beş yıl içinde yayınlanmış ve oldukça etkili olduğu gösterilmiş olan sinüs kosinüs algoritması (SCA) ve çekirge optimizasyon algoritması (GOA) gibi diğer sezgisel-üstü algoritmalar ile ayarlanmış PID kontrolörler ile de kıyaslanmıştır. Karşılaştırmalar neticesinde, bu çalışma ile önerilen HGSO ayarlı PID kontrolörün uçak eğim açısı kontrol sistemi için diğer güncel ve etkili olan sezgisel-üstü algoritmalar ile ayarlanmış PID kontrolörlerine göre daha etkili olduğu ve iyi bir performansa sahip olduğu görülmüştür.

Kaynakça

  • [1] Y. Işik and H. Korul, “Comparison of classical PD and fuzzy PD controller performances of an aircraft pitch angle control system,” Gazi University Journal of Science, vol. 24, no. 4. Gazi University, pp. 781–789, 2011.
  • [2] C. S. Mohanty, P. S. Khuntia, and D. Mitra, “Design of Stable Nonlinear Pitch Control System for a Jet Aircraft by Using Artificial Intelligence,” Proc. Natl. Acad. Sci. India Sect. A - Phys. Sci., vol. 89, no. 1, pp. 57–66, 2019, doi: 10.1007/s40010-017-0396-z.
  • [3] R. A. Nichols, R. A. Nichols, R. T. Reichert, and W. J. Rugh, “Gain Scheduling for H-Infinity Controllers: A Flight Control Example,” IEEE Trans. Control Syst. Technol., vol. 1, no. 2, pp. 69–79, 1993, doi: 10.1109/87.238400.
  • [4] P.S. Khuntia and D. Mitra, “Radial Basic Function Neural Controller for Pitch Control of an Aircraft,” Georg. Electron. Sci. J. Comput. Sci. Telecommun., no. 2, pp. 69–82, 2009.
  • [5] M. Vijaya Kumar, S. Suresh, S. N. Omkar, R. Ganguli, and P. Sampath, “A direct adaptive neural command controller design for an unstable helicopter,” Eng. Appl. Artif. Intell., vol. 22, no. 2, pp. 181–191, 2009, doi: 10.1016/j.engappai.2008.07.004.
  • [6] N. Wahid and N. Hassan, “Self-tuning fuzzy PID controller design for aircraft pitch control,” in Proceedings - 3rd International Conference on Intelligent Systems Modelling and Simulation, ISMS 2012, 2012, pp. 19–24, doi: 10.1109/ISMS.2012.27.
  • [7] E. Sayar and H. M. Ertunç, “Fuzzy logic controller and PID controller design for aircraft pitch control,” in Mechanisms and Machine Science, 2019, vol. 59, pp. 53–60, doi: 10.1007/978-3-319-98020-1_7.
  • [8] A. Khalid, K. Zeb, and A. Haider, “Conventional PID, adaptive PID, and sliding mode controllers design for aircraft pitch control,” in 2019 International Conference on Engineering and Emerging Technologies, ICEET 2019, 2019, pp. 1–6, doi: 10.1109/CEET1.2019.8711871.
  • [9] G. Altintaş and Y. Aydin, “Comparison of fractional and integer order PID controllers on aircraft model using genetic algorithm,” in 2016 National Conference on Electrical, Electronics and Biomedical Engineering (ELECO), 2016, pp. 242–246.
  • [10] A. Chowdhury and V. G. Nair, “Optimization of PID controller gains of an aircraft pitch control system using particle swarm optimization algorithm,” Int. J. Mech. Prod. Eng. Res. Dev., vol. 7, no. 6, pp. 223–229, Dec. 2017, doi: 10.24247/ijmperddec201724.
  • [11] R. Zaeri, A. Ghanbarzadeh, B. Attaran, and Z. Zaeri, “Fuzzy Logic Controller based pitch control of aircraft tuned with bees algorithm,” in Proceedings - 2011 2nd International Conference on Control, Instrumentation and Automation, ICCIA 2011, 2011, pp. 705–710, doi: 10.1109/ICCIAutom.2011.6356745.
  • [12] P. Kumar and S. Narayan, “Multi-objective bat algorithm tuned optimal FOPID controller for robust aircraft pitch control,” Int. J. Syst. Control Commun., vol. 8, no. 4, pp. 348–362, Jan. 2017, doi: 10.1504/IJSCC.2017.087127.
  • [13] F. A. Hashim, E. H. Houssein, M. S. Mabrouk, W. Al-Atabany, and S. Mirjalili, “Henry gas solubility optimization: A novel physics-based algorithm,” Futur. Gener. Comput. Syst., vol. 101, pp. 646–667, Dec. 2019, doi: 10.1016/j.future.2019.07.015.
  • [14] F. A. Hashim, E. H. Houssein, K. Hussain, M. S. Mabrouk, and W. Al-Atabany, “A modified Henry gas solubility optimization for solving motif discovery problem,” Neural Comput. Appl., 2019, doi: 10.1007/s00521-019-04611-0.
  • [15] B. S. Yıldız, A. R. Yıldız, N. Pholdee, S. Bureerat, S. M. Sait, and V. Patel, “The Henry gas solubility optimization algorithm for optimum structural design of automobile brake components,” Mater. Test., vol. 62, no. 3, pp. 261–264, Mar. 2020, doi: 10.3139/120.111479.
  • [16] N. Neggaz, E. H. Houssein, and K. Hussain, “An efficient Henry gas solubility optimization for feature selection,” Expert Syst. Appl., vol. 152, p. 113364, 2020, doi: 10.1016/j.eswa.2020.113364.
  • [17] “Control Tutorials for MATLAB and Simulink - Aircraft Pitch: System Modeling,” Published with MATLAB® 7.14, 2012. [Online]. Available: http://ctms.engin.umich.edu/CTMS/index.php?example=AircraftPitch&section=SystemModeling. [Accessed: 23-Mar-2020].
  • [18] A. Johari et al., “Improvement of pitch motion control of an aircraft systems,” Telkomnika (Telecommunication Comput. Electron. Control., vol. 16, no. 5, pp. 2263–2274, Oct. 2018, doi: 10.12928/TELKOMNIKA.v16i5.7434.
  • [19] K. Ogata, Modern Control Engineering, 4th Ed. Prentice-Hall, 2002.
  • [20] S. Mirjalili, “SCA: A Sine Cosine Algorithm for solving optimization problems,” Knowledge-Based Syst., vol. 96, pp. 120–133, 2016, doi: 10.1016/j.knosys.2015.12.022.
  • [21] S. Ekinci, “Optimal design of power system stabilizer using sine cosine algorithm,” Journal of the Faculty of Engineering and Architecture of Gazi University, vol. 34, no. 3. Gazi Üniversitesi, pp. 1329–1350, 2019, doi: 10.17341/gazimmfd.460529.
  • [22] S. Saremi, S. Mirjalili, and A. Lewis, “Grasshopper Optimisation Algorithm: Theory and application,” Adv. Eng. Softw., vol. 105, pp. 30–47, 2017, doi: 10.1016/j.advengsoft.2017.01.004.
  • [23] B. Hekimoğlu and S. Ekinci, “Grasshopper optimization algorithm for automatic voltage regulator system,” in 2018 5th International Conference on Electrical and Electronics Engineering, ICEEE 2018, 2018, pp. 152–156, doi: 10.1109/ICEEE2.2018.8391320.
  • [24] B. Hekimoğlu, “Sine-cosine algorithm-based optimization for automatic voltage regulator system,” Trans. Inst. Meas. Control, vol. 41, no. 6, pp. 1761–1771, 2019, doi: 10.1177/0142331218811453.
  • [25] Z. L. Gaing, “A particle swarm optimization approach for optimum design of PID controller in AVR system,” IEEE Trans. Energy Convers., vol. 19, no. 2, pp. 384–391, 2004, doi: 10.1109/TEC.2003.821821.
Toplam 25 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Veysi Kaçtı Bu kişi benim 0000-0003-2244-3200

Serdar Ekinci 0000-0002-7673-2553

Davut İzci 0000-0001-8359-0875

Yayımlanma Tarihi 30 Eylül 2020
Gönderilme Tarihi 26 Mart 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 11 Sayı: 3

Kaynak Göster

IEEE V. Kaçtı, S. Ekinci, ve D. İzci, “Henry Gaz Çözünürlük Optimizasyonu ile Uçak Eğim Kontrol Sistemi için Etkin Kontrolör Tasarımı”, DÜMF MD, c. 11, sy. 3, ss. 953–964, 2020, doi: 10.24012/dumf.709449.
DUJE tarafından yayınlanan tüm makaleler, Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır. Bu, orijinal eser ve kaynağın uygun şekilde belirtilmesi koşuluyla, herkesin eseri kopyalamasına, yeniden dağıtmasına, yeniden düzenlemesine, iletmesine ve uyarlamasına izin verir. 24456