Derleme
BibTex RIS Kaynak Göster

Sinh-ortam süzgeçlerinin biyomedikal uygulama örneklerinin incelenmesi

Yıl 2021, Cilt: 12 Sayı: 3, 499 - 514, 29.06.2021
https://doi.org/10.24012/dumf.955658

Öz

Bu çalışmada sinh-ortam süzgeçlerinin biyomedikal uygulama örneklerinin bir incelemesi sunulmaktadır. Gelişmiş ülkelerde yaşam standartlarının artması, düşük maliyetli ve pratik sağlık çözümleri ihtiyaçlarının bir araya gelmesi biyomedikal sistemlerin ilerleme hızını belirlemektedir. Günümüz biyomedikal sistemlerinin tasarım stratejileri, daha yüksek hız ve geniş dinamik aralık elde etmeye, daha düşük güç tüketimine ve taşınabilir tasarım sağlamaya yöneliktir. Bu nedenle, düşük besleme gerilimde geniş bir dinamik aralık sunma, doğrusallık ve düşük güç tüketimi sağlama, frekans karakteristiğinin elektronik olarak ayarlanması, küçük çip alanı gereksinimi gibi olumlu özelliklere sahip olan sinh-ortam süzgeçleri, son derece düşük güç dağılımı gerektiren biyomedikal uygulamalar için gittikçe önem kazanmaktadır. Elektroensefalogram (EEG), Elektrokardiyogram (EKG) ve Elektromiyogram (EMG) gibi düşük voltaj büyüklüğüne ve düşük frekansa sahip ana biyomedikal sinyallerin alınması sırasında bazı istenmeyen sinyaller oluşmaktadır. Bu istenmeyen sinyallerin biyopotansiyel sinyalden uzaklaştırılması için sinyalin özelliklerine göre çeşitli süzgeçleme işlemleri gerçekleştirilir. Bu çalışmanın konusu, biyomedikal uygulamalar için literatürde önerilen düşük güçlü ve düşük gerilimli sinh-ortam süzgeçlerinin incelenmesidir.

Kaynakça

  • [1] R. W. Adams, “Filtering in Log Domain”, 63 rd AES Conf ., s.1470, 1979.
  • [2] E. Seevinck, “Companding current-mode integrator: A new circuit principle for continuous-time monolithic filters,” Electronics Letters, vol. 26, no. 24, p. 2046, 1990.
  • [3] D. R. Frey, “Log-domain filtering: an approach to current-mode filtering”, IEE Proceedings G Circuits, Devices and Systems, 140(6), p.406., 1993.
  • [4] C. Toumazou, J. Ngarmnil, and T. S. Lande, “Micropower log-domain filter for electronic cochlea,” Electronics Letters, vol. 30, no. 22, pp. 1839–1841, 1994.
  • [5] M. H. Eskiyerli, A. J. Payne, and C. Toumazou, “State space synthesis of integrators based on the MOSFET square law,” Electronics Letters, vol. 32, no. 6, p. 505, 1996.
  • [6] D. R. Frey, “General class of current mode filters,” Proc. - IEEE Int. Symp. Circuits Syst., vol. 2, pp. 1435–1437, 1993, doi: 10.1109/iscas.1993.692926.
  • [7] J. Mulder, W. A. Serdijn, A. C. Van Der Woerd, and A. H. M. Van Roermund, “Dynamic translinear circuits - an overview,” Analog Integr. Circuits Signal Process., vol. 22, no. 2, pp. 111–126, 2000, doi: 10.1023/a:1008332324277.
  • [8] A. J. Lopez-Martin and A. Carlosena, "Synthesis of sinh systems from Gm-C systems by component-to-component substitution," 42nd Midwest Symposium on Circuits and Systems, Las Cruces, NM, USA, 1999, pp. 287-290 vol. 1, doi: 10.1109/MWSCAS.1999.867263.
  • [9] D. R. Frey, “Exponential state space filters: a generic current mode design strategy,” IEEE Trans. Circuits Syst. I Fundam. Theory Appl., vol. 43, no. 1, pp. 34–42, 1996, doi: 10.1109/81.481459.
  • [10] Y. Tsividis, “Externally linear, time-invariant systems and their application to companding signal processors,” IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 44, no. 2, pp. 65–85, 1997.
  • [11] A. G. Katsiamis and E. M. Drakakis, “Sinh filters in weak inversion CMOS technology,” Midwest Symp. Circuits Syst., vol. 2005, pp. 1637–1640, 2005, doi: 10.1109/MWSCAS.2005.1594431.
  • [12] S. A. P. Haddad and W. A. Serdijn, “An ultra low-power class-AB Sinh integrator,” SBCCI 2006 - 19th Symp. Integr. Circuits Syst. Des., vol. 2006, no. JANUARY 2006, pp. 74–79, 2006, doi: 10.1145/1150343.1150367.
  • [13] A. G. Katsiamis, H. M. D. Ip, and E. M. Drakakis, “A practical CMOS companding Sinh lossy integrator,” Proc. - IEEE Int. Symp. Circuits Syst., pp. 3303–3306, 2007, doi: 10.1109/iscas.2007.378217.
  • [14] K. N. Glaros, A. G. Katsiamis, and E. M. Drakakis, “Harmonic vs. geometric mean Sinh integrators in weak inversion CMOS,” 2008 IEEE International Symposium on Circuits and Systems, 2008.
  • [15] J. Mulder, “A harmonic mean Class-AB integrator”, Static and Dynamic Translinear Circuits: Delft University Press, pp. 247-254, 1998.
  • [16] A. G. Katsiamis, K. N. Glaros, and E. M. Drakakis, “Insights and advances on the design of CMOS Sinh companding filters,” IEEE Trans. Circuits Syst. I Regul. Pap., vol. 55, no. 9, pp. 2539–2550, 2008, doi: 10.1109/TCSI.2008.921037.
  • [17] E. M. Kardoulaki, K. N. Glaros, A. G. Katsiamis and E. M. Drakakis, "An 8Hz, 0.1µW, 110+ dBs Sinh CMOS Bessel filter for ECG signals," 2009 International Conference on Microelectronics - ICM, Marrakech, Morocco, pp. 14-17, 2009, doi: 10.1109/ICM.2009.5418668.
  • [18] S. Solis-Bustos, J. Silva-Martinez, F. Maloberti, and E. Sanchez-Sinencio, “A 60-dB dynamic-range CMOS sixth-order 2.4-Hz low-pass filter for medical applications,” IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 47, no. 12, pp. 1391–1398, 2000.
  • [19] C. Kasimis and C. Psychalinos, "Design of sinh-domain filters using complementary operators," Int. J. Circ. Theor. Appl, vol. 40, pp. 1019-1039, 2012.
  • [20] C. Kasimis and C. Psychalinos, “1.2 V BiCMOS sinh-domain filters,” Circuits, Syst. Signal Process., vol. 31, no. 4, pp. 1257–1277, 2012, doi: 10.1007/s00034-011-9379-5.
  • [21] M. Punzenberger and C. C. Enz, “A 1.2-V low-power BiCMOS class AB log-domain filter,” IEEE Journal of Solid-State Circuits, vol. 32, no. 12, pp. 1968–1978, 1997.
  • [22] D. Python and C. C. Enz, “A micropower class-AB CMOS log-domain filter for DECT applications,” IEEE Journal of Solid-State Circuits, vol. 36, no. 7, pp. 1067–1075, 2001.
  • [23] F. Khanday and N. Shah, “A low-Voltage and low-Power sinh-Domain universal biquadratic filter for low-Frequency applications,” Turkish J. Electr. Eng. Comput. Sci., vol. 21, no. SUPPL. 2, pp. 2205–2217, 2013, doi: 10.3906/elk-1203-128.
  • [24] A.-C. Demartinos, C. Kasimis, C. Laoudias, and C. Psychalinos, “Companding Realizations of the Nonlinear Energy Operator,” ISRN Biomed. Eng., vol. 2013, pp. 1–7, 2013, doi: 10.1155/2013/750290.
  • [25] A. S. Walia, H. M. Ip, A. Katsiamis, and E. M. Drakakis, “A CMOS Current-Mode Hyperbolic-Sine-Based Three-Electrode Sensor Interfacing and Amplification Circuit,” 2007 14th IEEE International Conference on Electronics, Circuits and Systems, 2007.
  • [26] S. Tongkulboriboon, P. Pawarangkoon, and W. Kiranon, “Externally linear current amplifiers,” Int. J. Electron., vol. 94, no. 6, pp. 587–596, 2007, doi: 10.1080/00207210701300408.
  • [27] C. Sawigun and W. A. Serdijn, “Ultra-low-power, class-AB, CMOS four-quadrant current multiplier,” Electron. Lett., vol. 45, no. 10, pp. 483–484, 2009, doi: 10.1049/el.2009.3311.
  • [28] C. Sawigun and W. A. Serdijn, “Ultra-low-power, class-AB, CMOS four-quadrant current multiplier,” Electron. Lett., vol. 45, no. 10, pp. 483–484, 2009, doi: 10.1049/el.2009.3311.
  • [29] E. Pilavaki and C. Psychalinos, “Analog cochlear implant using Sinh-Domain filters,” 2011 20th Eur. Conf. Circuit Theory Des. ECCTD 2011, pp. 286–289, 2011, doi: 10.1109/ECCTD.2011.6043342.
  • [30] M. Kongpoon, “A low-power and wide dynamic range class-AB Sinh differentiator,” ISPACS 2013 - 2013 Int. Symp. Intell. Signal Process. Commun. Syst., pp. 684–687, 2013, doi: 10.1109/ISPACS.2013.6704636.
  • [31] F. A. Khanday, E. Pilavaki, and C. Psychalinos, “Ultra low-voltage ultra low-power Sinh-Domain Wavelet filer for electrocardiogram signal analysis,” J. Low Power Electron., vol. 9, no. 3, pp. 288–294, 2013, doi: 10.1166/jolpe.2013.1260.
  • [32] M. Panagopoulou, C. Psychalinos, F. A. Khanday, and N. A. Shah, “Sinh-Domain multiphase sinusoidal oscillator,” Microelectronics J., vol. 44, no. 9, pp. 834–839, 2013, doi: 10.1016/j.mejo.2013.06.017.
  • [33] G. Tsirimokou, C. Laoudias, and C. Psychalinos, “Tinnitus detector realization using sinh-domain circuits,” J. Low Power Electron., vol. 9, no. 4, pp. 458–470, 2013, doi: 10.1166/jolpe.2013.1272.
  • [34] F. Kafe and C. Psychalinos, “0.5 V RMS-to-DC Converter Topologies Suitable for Implantable Biomedical Devices”, J. Low Power Electron., 10:3, 373-382, 2014.
  • [35] G. Tsirimokou, C. Laoudias, and C. Psychalinos, “0.5-V fractional-order companding filters”, International Journal of Circuit Theory and Applications, 43, 2014, doi: 10.1002/cta.1995.
  • [36] N. A. Kant, F. A. Khanday, and C. Psychalinos, “0.5V Sinh-Domain Design of Activation Functions and Neural Networks,” J. Low Power Electron., vol. 10, no. 2, pp. 201–213, 2014, doi: 10.1166/jolpe.2014.1321.
  • [37] F. Kafe, F. A. Khanday, and C. Psychalinos, “A 50 mHz Sinh-Domain High-pass Filter for Realizing an ECG Signal Acquisition System,” Circuits, Syst. Signal Process., vol. 33, no. 12, pp. 3673–3696, 2014, doi: 10.1007/s00034-014-9826-1.
  • [38] P. Bertsias and C. Psychalinos, “Ultra-low voltage sixth-order low pass filter for sensing the t-wave signal in ECGs,” J. Low Power Electron. Appl., vol. 4, no. 4, pp. 292–303, 2014, doi: 10.3390/jlpea4040292.
  • [39] G. Tsirimokou and C. Psychalinos, “Ultra-low voltage fractional-order differentiator and integrator topologies: an application for handling noisy ECGs,” Analog Integr. Circuits Signal Process., vol. 81, no. 2, pp. 393–405, 2014, doi: 10.1007/s10470-014-0391-0.
  • [40] F. Kafe and C. Psychalinos, “Realization of companding filters with large time-constants for biomedical applications,” Analog Integr. Circuits Signal Process., vol. 78, no. 1, pp. 217–231, 2014, doi: 10.1007/s10470-013-0165-0.
  • [41] E. M. Kardoulaki, K. N. Glaros, A. G. Katsiamis, H. M. D. Ip and E. M. Drakakis, “A simulation study of high-order CMOS hyperbolic-sine filters”, Int. J. Circ. Theor. Appl., vol. 42, pp. 1033–1050, 2014.
  • [42] F. A. Khanday, C. Kasimis, C. Psychalinos, and N. A. Shah, “Sinh-Domain linear transformation filters,” Int. J. Electron., vol. 101, no. 2, pp. 241–254, 2014, doi: 10.1080/00207217.2013.780265.
  • [43] C. Kasimis and C. Psychalinos, “Sinh-Domain Universal biquad filters,” J. Circuits, Syst. Comput., vol. 23, no. 9, pp. 1–19, 2014, doi: 10.1142/S0218126614501345.
  • [44] F. A. Khanday and C. Psychalinos, “Ultra-low voltage MOS design of cochlear implant,” Cochlear Implant. Technol. Adv. Psychol. Impacts Long-Term Eff., no. January 2014, pp. 143–162, 2014.
  • [45] G. Tsirimokou, C. Psychalinos, F. A. Khanday, and N. A. Shah, “0.5 V sinh-domain differentiator,” Int. J. Electron. Lett., vol. 3, no. 1, pp. 34–44, 2015, doi: 10.1080/00207217.2014.901425.
  • [46] C. Psychalinos, K. Roumelioti, F. Khanday, and N. Shah, “1.2V Sinh-Domain allpass filter”, International Journal of Circuit Theory and Applications, vol. 43, 2013, doi:10.1002/cta.1922.
  • [47] N. A. Kant, M. R. Dar, and F. A. Khanday, “An ultra-low-voltage electronic implementation of inertial neuron model with nonmonotonous Liaos activation function,” Netw. Comput. Neural Syst., vol. 26, no. 3–4, pp. 116–135, 2015, doi: 10.3109/0954898X.2016.1157733.
  • [48] G. D. Skotis, F. A. Khanday, and C. Psychalinos, “Sinh-domain complex integrators,” Int. J. Electron., vol. 102, no. 7, pp. 1073–1090, 2015, doi: 10.1080/00207217.2014.963891.
  • [49] C. Diamantopoulos and C. Psychalinos, “Mihalas–Niebur model implementation using Sinh-Domain integrators,” Analog Integr. Circuits Signal Process., vol. 88, no. 1, pp. 161–171, 2016, doi: 10.1007/s10470-016-0751-z.
  • [50] N. A. Kant, M. R. Dar, F. A. Khanday, and C. Psychalinos, “Ultra-low-Voltage Integrable Electronic Realization of Integer- and Fractional-Order Liao’s Chaotic Delayed Neuron Model,” Circuits, Syst. Signal Process., vol. 36, no. 12, pp. 4844–4868, 2017, doi: 10.1007/s00034-017-0615-5.
  • [51] N. A. Kant, M. R. Dar, F. A. Khanday, and C. Psychalinos, “Analog implementation of TDCNN single-cell architecture using sinh-domain companding technique,” 2016 IEEE Int. Conf. Recent Trends Electron. Inf. Commun. Technol. RTEICT 2016 - Proc., pp. 653–657, 2017, doi: 10.1109/RTEICT.2016.7807904.
  • [52] F. A. Khanday, N. A. Kant, and M. R. Dar, “Low-Voltage Realization of Neural Networks using Non-Monotonic Activation Function for Digital Applications,” Recent Adv. Electr. Electron. Eng. (Formerly Recent Patents Electr. Electron. Eng., vol. 11, no. 3, pp. 367–375, 2018, doi: 10.2174/2352096511666180312144420.
  • [53] G. S. S. S. S. V. K. Mohan and Y. Srinivasa Rao, “An efficient design of fractional order differentiator using hybrid Shuffled frog leaping algorithm for handling noisy electrocardiograms,” Int. J. Comput. Appl., vol. 0, no. 0, pp. 1–7, 2019, doi: 10.1080/1206212X.2019.1573948.
  • [54] F. A. Khanday, N. A. Kant, M. R. Dar, T. Z. A. Zulkifli, and C. Psychalinos, “Low-Voltage Low-Power Integrable CMOS Circuit Implementation of Integer- and Fractional-Order FitzHugh-Nagumo Neuron Model,” IEEE Trans. Neural Networks Learn. Syst., vol. 30, no. 7, pp. 2108–2122, 2019, doi: 10.1109/TNNLS.2018.2877454.
  • [55] F. A. Khanday, M. R. Dar, N. A. Kant, T. Z. A. Zulkifli, and C. Psychalinos, “Ultra-low-voltage integrable electronic implementation of delayed inertial neural networks for complex dynamical behavior using multiple activation functions,” Neural Comput. Appl., vol. 32, no. 12, pp. 8297–8314, 2020, doi: 10.1007/s00521-019-04322-6.
  • [56] N. A. Kant, F. A. Khanday, and C. Psychalinos, “0.5V Sinh-Domain Design of Activation Functions and Neural Networks,” J. Low Power Electron., vol. 10, no. 2, pp. 201–213, 2014, doi: 10.1166/jolpe.2014.1321.
  • [57] F. A. Khanday, N. A. Kant, and M. R. Dar, “Low-voltage realization of neural networks using non-monotonic activation function for digital applications,” Recent Advances in Electrical & Electronic Engineering (Formerly Recent Patents on Electrical & Electronic Engineering), vol. 11, no. 3, pp. 367-375, 2018.
  • [58] A. Houssein, and E. Drakakis, “MOS-only reduced-order ELIN cochlear channels: comparative performance evaluation,” International Journal of Circuit Theory and Applications, vol. 45, no. 6, pp. 731-743, 2016.
Toplam 58 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Fatma Zuhal Adalar 0000-0001-8947-9123

Ali Kırçay 0000-0002-2842-1507

Yayımlanma Tarihi 29 Haziran 2021
Gönderilme Tarihi 31 Mart 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 12 Sayı: 3

Kaynak Göster

IEEE F. Z. Adalar ve A. Kırçay, “Sinh-ortam süzgeçlerinin biyomedikal uygulama örneklerinin incelenmesi”, DÜMF MD, c. 12, sy. 3, ss. 499–514, 2021, doi: 10.24012/dumf.955658.
DUJE tarafından yayınlanan tüm makaleler, Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır. Bu, orijinal eser ve kaynağın uygun şekilde belirtilmesi koşuluyla, herkesin eseri kopyalamasına, yeniden dağıtmasına, yeniden düzenlemesine, iletmesine ve uyarlamasına izin verir. 24456