Araştırma Makalesi
BibTex RIS Kaynak Göster

Hibrit yenilenebilir enerji sistem tasarımı: Balıkesir örneği

Yıl 2022, Cilt: 13 Sayı: 3, 517 - 529, 30.09.2022
https://doi.org/10.24012/dumf.1148223

Öz

Günümüzde enerjiye olan ihtiyaç teknolojik gelişmeler, nüfus artışı, sanayileşme ve küreselleşme gibi nedenlerden dolayı artış göstermektedir. Fosil kaynakların yetersiz oluşu ve tükenebilir olması yenilenebilir enerji kaynaklarının kullanımını ve önemini arttırmaktadır. Yenilenebilir enerji kaynaklarından daha fazla faydalanmak için hibrit sistemler geliştirilmiştir. Hibrit sistemler birden fazla kaynağın verimli şekilde kullanıldığı sistemlerdir. Türkiye’de rüzgâr ve güneş enerjisi bakımından yeterli potansiyele sahip birçok alan mevcuttur. Bu çalışmada PVSol programı kullanılarak Balıkesir İli için hibrit sistem tasarımı yapılmıştır. Hibrit sistemlerin kurulu güç kapasitesi 7-50 KW arasında değişen 10 farklı senaryo için tasarım yapılmıştır. Çalışmalarda kurulu güç kapasitesi 7-15 KW arası 5 senaryo şebekeden bağımsız, 20-50 KW arası 5 senaryo şebekeye bağlı olarak tasarlanmıştır. Şebekeden bağımsız sistemlerde kurulu güce ve üretilen enerjiye bağlı olarak akümülatör ile üretilen enerjiyi depolamak için şarj regülatörü seçimleri yapılmıştır. Çalışma temiz ve güvenilir enerji üretim sistemleri güneş ve rüzgâr enerjisini hibrit olarak kullanması yönüyle diğer yenilenebilir enerji sistemlerinden üstünlük göstermektedir.

Kaynakça

  • [1] M. Demirtaş, “Güneş ve rüzgâr enerjisi kullanılarak şebeke ile paralel çalışabilen hibrit enerji santral tasarımı ve uygulaması,” Gazi Üniversitesi Fen Bilimleri Enstitüsü, Ankara, 2008.
  • [2] M. Engin, “Fotovoltaik rüzgâr hibrit enerji sisteminin izmir koşullarında tasarımı ve denenmesi,” Doktora Tezi, Ege Üniversitesi Fen Bilimleri Enstitüsü, İzmir, 2002.
  • [3] “Dünya Enerji Konseyi Türkiye 2021 Küresel Enerji Raporu,” 13-Jan-2022. [Online]. Available: https://www.dunyaenerji.org.tr/wp-content/uploads/2021/04/2021-Kuresel-Enerji-Raporu-Ozeti.pdf.
  • [4] “Enerji Sektör Görünümü (TSKB).” [Online]. Available: https://www.tskb.com.tr/i/assets/document/pdf/enerji-sektor-gorunumu-2021.pdf. [Accessed: 02-Jan-2022].
  • [5] S. Ashok, “Optimised model for community-based hybrid energy system,” Renew. Energy, vol. 32, no. 7, pp. 1155–1164, 2007.
  • [6] “Worlddata, Energy consumption.” [Online]. Available: https://ourworldindata.org/explorers/energy?facet=none&country=USA~GBR~CHN~OWID_WRL~IND~BRA~ZAF&Total+or+Breakdown=Total&Energy+or+Electricity=Primary+energy&Metric=Annual+consumption. [Accessed: 02-Jan-2022].
  • [7] “TEİAŞ (Türkiye Elektrik İletim Anonim Şirketi), Türkiye Elektrik Üretim-İletim İstatistikleri, 2008, Türkiye Kurulu Gücünün Yıllar İtibariyle Gelişimi.” [Online]. Available: erişim: http://www.teias.gov.tr/istatistik2008/1.xls. [Accessed: 01-Feb-2022].
  • [8] J. Li, W. Wei, and J. Xiang, “A simple sizing algorithm for stand-alone PV/wind/battery hybrid microgrids,” Energies, vol. 5, no. 12, pp. 5307–5323, 2012.
  • [9] T. Senjyu, D. Hayashi, A. Yona, N. Urasaki, and T. Funabashi, “Optimal configuration of power generating systems in isolated island with renewable energy,” Renew. Energy, vol. 32, no. 11, pp. 1917–1933, 2007.
  • [10] M. A. Elhadidy, “Performance evaluation of hybrid (wind/solar/diesel) power systems,” Renew. Energy, vol. 26, no. 3, pp. 401–413, 2002.
  • [11] D. Nelson, M. Nehrir, and C. Wang, “Unit sizing and cost analysis of stand-alone hybrid wind/PV/fuel cell power generation systems,” Renew. Energy, vol. 31, no. 10, pp. 1641–1656, 2006.
  • [12] V. Marano, G. Rizzo, and F. A. Tiano, “Application of dynamic programming to the optimal management of a hybrid power plant with wind turbines, photovoltaic panels and compressed air energy storage,” Appl. Energy, vol. 97, pp. 849–859, 2012.
  • [13] M. S. Ismail, M. Moghavvemi, and T. Mahlia, “Genetic algorithm based optimization on modeling and design of hybrid renewable energy systems,” Energy Convers. Manag., vol. 85, pp. 120–130, 2014.
  • [14] K. Sasidhar and B. J. Kumar, “Optimal sizing of PV-Wind Hybrid energy system using Genetic Algorithm (GA) and Particle swarm optimization (PSO),” Int. J. Sci. Eng. Technol. Res. IJSETR, vol. 4, no. 2, 2015.
  • [15] P. Sangeetha and S. Suja, “Modeling and heuristic based optimal sizing of PV wind system,” presented at the 2017 International Conference on Innovations in Electrical, Electronics, Instrumentation and Media Technology (ICEEIMT), 2017, pp. 359–363.
  • [16] S. Diaf, G. Notton, M. Belhamel, M. Haddadi, and A. Louche, “Design and techno-economical optimization for hybrid PV/wind system under various meteorological conditions,” Appl. Energy, vol. 85, no. 10, pp. 968–987, 2008.
  • [17] L. Dong and C. Chen, “Size optimisation of hybrid wind-PV power generation systems for remote rural areas,” Int. J. Glob. Energy Issues, vol. 24, no. 3–4, pp. 259–266, 2005.
  • [18] A. Ozdamar, N. Ozbalta, A. Akin, and E. D. Yildirim, “An application of a combined wind and solar energy system in Izmir,” Renew. Sustain. Energy Rev., vol. 9, no. 6, pp. 624–637, 2005.
  • [19] R. W. Wies, R. A. Johnson, A. N. Agrawal, and T. J. Chubb, “Simulink model for economic analysis and environmental impacts of a PV with diesel-battery system for remote villages,” IEEE Trans. Power Syst., vol. 20, no. 2, pp. 692–700, 2005.
  • [20] A. Fetanat and E. Khorasaninejad, “Size optimization for hybrid photovoltaic–wind energy system using ant colony optimization for continuous domains based integer programming,” Appl. Soft Comput., vol. 31, pp. 196–209, 2015.
  • [21] A. N. Celik, “Techno-economic analysis of autonomous PV-wind hybrid energy systems using different sizing methods,” Energy Convers. Manag., vol. 44, no. 12, pp. 1951–1968, 2003.
  • [22] M. Elhadidy and S. Shaahid, “Feasibility of hybrid (wind+ solar) power systems for Dhahran, Saudi Arabia,” Renew. Energy, vol. 16, no. 1–4, pp. 970–976, 1999.
  • [23] M. Hadidian-Moghaddam, S. Arabi-Nowdeh, and M. Bigdeli, “Optimal sizing of a stand-alone hybrid photovoltaic/wind system using new grey wolf optimizer considering reliability,” J. Renew. Sustain. Energy, vol. 8, no. 3, p. 035903, 2016.
  • [24] B. S. Borowy and Z. M. Salameh, “Methodology for optimally sizing the combination of a battery bank and PV array in a wind/PV hybrid system,” IEEE Trans. Energy Convers., vol. 11, no. 2, pp. 367–375, 1996.
  • [25] H. Wang, E. Abdollahi, R. Lahdelma, W. Jiao, and Z. Zhou, “Modelling and optimization of the smart hybrid renewable energy for communities (SHREC),” Renew. Energy, vol. 84, pp. 114–123, 2015.
  • [26] “Balıkesir İl Kültür ve Turizm Müdürlüğü.” [Online]. Available: https://balikesir.ktb.gov.tr/TR-65836/fiziki-ozellikler.html. [Accessed: 02-Mar-2022].
  • [27] “Iskra AT5-1 Measured Power Curve –Summary.” [Online]. Available: http://www. energygridsolutions.com/pdf/iskra%20power%20curve.pdf. [Accessed: 07-Jul-2021].
  • [28] “Endurance G-3120 Wind Turbine Specificaiton.” [Online]. Available: http://www.endurance windpower.com /g3120.html. [Accessed: 06-Jun-2021].
  • [29] “Bergey BWC Excel 10 kW Wind Turbine,” 07-Aug-2021. [Online]. Available: http/www.bergey.com/Products/ Excel.Spec.Frt.pdf.
  • [30] “Whisper 500, Tecnical Spesification.” [Online]. Available: http://www.realgoods.com/text/ pdf/whisper_spec.pdf. [Accessed: 08-Jul-2021].
  • [31] “Proven WT 15000 15 kW Wind Turbine.” [Online]. Available: http://www.naturalgen.co.uk/pdfs/ Tech%20specs%2015kW.pdf. [Accessed: 15-Jun-2021].
  • [32] “Tommatech 400 Watt 72 Percmono Güneş Paneli.” [Online]. Available: https://gunestenenerji.com/product/tt-400wp-72-hucreli-percmono-gunes-paneli-26.html.
  • [33] “Solar Led, Poli Kristal Paneller,” 06-Dec-2021. [Online]. Available: http://www.solarledtech.com/ index.php?option=com_content&view=article&id=38&Itemid=107&lang=tr.
  • [34] “Tristar Şarj Regülatörünün Teknik Özellikleri.” [Online]. Available: http://www.btekenergy.com / documents / Tristar.pdf. [Accessed: 06-Sep-2021].
  • [35] “Mutlu Akü - Mini Trak- Full Enerji Akülerinin teknik özellikleri.” [Online]. Available: http://www.mutlu.com.tr/common/file/mutlu_minitrak.pdf. [Accessed: 13-Jun-2021].
  • [36] G. Köse, “Hibrit (Guneş +Ruzgar) Enerji Sisteminden Elektrik Uretimi: Kutahya Orneği,” Dumlupınar Üniversitesi, Kütahya, 2010.
  • [37] W. Dong, Y. Li, and J. Xiang, “Optimal sizing of a stand-alone hybrid power system based on battery/hydrogen with an improved ant colony optimization,” Energies, vol. 9, no. 10, p. 785, 2016.
Toplam 37 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

İpek Atik 0000-0002-9761-1347

Ayşenur Sekin 0000-0002-2932-6384

Erken Görünüm Tarihi 30 Eylül 2022
Yayımlanma Tarihi 30 Eylül 2022
Gönderilme Tarihi 25 Temmuz 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 13 Sayı: 3

Kaynak Göster

IEEE İ. Atik ve A. Sekin, “Hibrit yenilenebilir enerji sistem tasarımı: Balıkesir örneği”, DÜMF MD, c. 13, sy. 3, ss. 517–529, 2022, doi: 10.24012/dumf.1148223.
DUJE tarafından yayınlanan tüm makaleler, Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır. Bu, orijinal eser ve kaynağın uygun şekilde belirtilmesi koşuluyla, herkesin eseri kopyalamasına, yeniden dağıtmasına, yeniden düzenlemesine, iletmesine ve uyarlamasına izin verir. 24456