Derleme
BibTex RIS Kaynak Göster

Host Shifts Related to Genetic Changes in Viruses

Yıl 2021, , 77 - 82, 30.06.2021
https://doi.org/10.47027/duvetfd.827886

Öz

Viruses are the most dynamic micro beings in ecology. In terms of their structure and replication strategies, they need a host to survive in nature. This circumstance that viruses have performed in the host to survive usually creates unfavorable conditions. The proteins that the virus get to its structure and synthesized in the host cell are disease triggering factors for the host cell. Altering balances and conditions in ecology cause a continuous change in the host-virus relationship. In particular, changes in the genomic structure affect the host affinity of the viruses. These changes occurring in the virus genome are of great importance for the most developed living things in ecology, that is, human and animal health. One of the most recent examples of this is the Coronavirus Disease-19 (COVID-19) outbreak and its agent, Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2). Although it is not exactly known where or from which creature the SARS-CoV-2 originated, genetic analyzes revealed that it was close to coronaviruses found in some bat and pangolin species. This result strengthens the hypothesis that SARS-CoV-2 may be a virus with a high probability of changing the host as a result of mutations. In this context, in the review, viruses whose host affinity changed after a genetic difference was mentioned over time. In addition, considering these changes that occurred in the past, new host changes that may occur in the future and predictions about possible disease outbreaks are also included in our current review.

Kaynakça

  • 1.Fenner F. (1999). Genetics of animal viruses. In: Encyclopedia of Virology. Granoff A, Webster RG (eds). pp. 606–613. Saunders Elsevier, Missouri, USA
  • 2. Fleischmann WR. (2011). Viral Genetics. In: Medical Microbiology. Baron S (ed). 4th ed. Chapter 43. The University of Texas Medical Branch at Galveston, Galveston, USA
  • 3. Drake, John W, John J. Holland. (1999). Mutation rates among RNA viruses. PNAS. 96(24):13910–13913.
  • 4. Lauring AS, Frydman J, Andino R. (2013). The role of mutational robustness in RNA virus evolution. Nat Rev Microbiol. 11(5):327–36.
  • 5. Wohl S, Schaffner SF, Sabeti PC. (2016). Genomic analysis of viral outbreaks. Annu Rev Virol. 3(1):173–95.
  • 6. Algül Ö, Dar BPW, Öksüz Z. (2019). Antiviral ilaçlardaki gelişmeler ve değerlendirilmesi. MUTFTD. 9(2):160-170.
  • 7. Yeşi̇lbağ K. (2002). Mutasyonel Değişimler ve Veteriner Virolojideki Önemi. Uludağ Üniv Vet Fak Derg. 21:125–131.
  • 8. Lehnert S. (2007). Biomolecular Action of ionizing radiation. Boca Raton, FL: CRC Press.
  • 9. Parrish CR, Holmes EC, Morens DM, Park EC. (2008). Cross-Species Virus Transmission and the Emergence of New Epidemic Diseases. Microbiol. Mol. Biol. Rev. 72(3):457–470.
  • 10. Geoghegan JL, Duchêne S, Holmes EC. (2017). Comparative analysis estimates the relative frequencies of co-divergence and cross-species transmission within viral families. PLoS Pathog. 13(2):1006215.
  • 11. Petrova VN, Russell CA. (2018). The evolution of seasonal İnfluenza viruses. Nat. Rev. Microbiol. 16(1):47–60.
  • 12. Huelsenbeck JP, Bull JJ, Clifford CW. (1996). Cunningham. Combining data in phylogenetic analysis. Trends Ecol. Evol. 11. 4:152–158.
  • 13. Oshiro LS, Schieble JH, Lennette EH. (1971) Electron microscopic studies of coronavirus. J Gen Virol. 12(2):161–8.
  • 14. Wang LF, Shi Z, Zhang S, Field H, Daszak P, Eaton BT. (2006). of bats and SARS. Emerg. Infect. Dis. 12(12):1834.
  • 15. Shereen MA, Khan S, Kazmi A, Bashir N, Siddique R. (2020). COVID-19 infection: Origin, transmission, and characteristics of human coronaviruses. Journal of Advanced Research. 24:91–98.
  • 16. Wang N, Shi X, Jiang L, Zhang S, Wang D, Tong P, et al. (2013). Structure of MERS-CoV spike receptor-binding domain complexed with human receptor DPP4. Cell Res. 23(8):986–93.
  • 17. Benvenuto D, Angeletti S, Giovanetti M, Bianchi M, Pascarella S, Cauda R, et al. (2020). Evolutionary analysis of SARS-CoV-2: how mutation of Non-Structural Protein 6 (NSP6) could affect viral autophagy. J Infect. 81(1):e24–7.
  • 18. Sağlık Bilimleri Üniversitesi (SBÜ) (Taner Yıldırmak) (2017), Erişim: https://www.klimik.org.tr/wp-content/uploads/2017/05/HIV B%C4%B0YOLOJ%C4%B0S%C4%B0-VE-PATOGENEZ%C4%B0-Taner-YILDIRMAK.pdf Erişim tarihi: 17.04.2020.
  • 19. Blood, German Advisory Committee. (2016). Human immunodeficiency virus (HIV). Transfus Med Hemother. 43(3):203.
  • 20. DEU (Aslı Sade Memişoğlu) (2014), Erişim: http://kisi.deu.edu.tr//asli.memisoglu/Evrim/1-Evrimsel%20d%c3%bc%c5%9f%c3%bcnce%20i%c3%a7in%20bir%20%c3%b6rnek-HIV.pdf Erişim tarihi: 27.05.2020.
  • 21. Blanpain C, Libert F, Vassart G, Parmentier M. (2002). CCR5 and HIV infection. Recept Channels. 8(1):19–31.
  • 22.PAÜ Tıp Fakültesi (Selda Sayın Kutlu) (2017). Erişim: https://www.klimik.org.tr/wp-content/uploads/2017/12/HIV-Patogenez-Klinik-ve-%C4%B0mmunolojik-S%C4%B1n%C4%B1flama-Selda-SAYIN-KUTLU.pdf Erişim Tarihi: 20.04.2020.
  • 23. Kelly WR. (1978). An Enteric disease of dogs resembling feline panleucopaenia. Aust Vet J. 54(12):593–593.
  • 24. Zhou P, Zeng W, Zhang X, Li S. (2017). The genetic evolution of canine parvovirus - A new perspective. PLoS One. 12(3):e0175035.
  • 25. Battilani M, Scagliarini A, Ciulli S, Morganti L, Prosperi S. (2006). High genetic diversity of the VP2 gene of a canine parvovirus strain detected in a domestic cat. Virology. 352(1):22–6.
  • 26. Decaro N, Desario C, Addie DD, Martella V, Vieira MJ, Elia G, et al. (2007). The study molecular epidemiology of canine parvovirus, Europe. Emerg Infect Dis. 13(8):1222–4.
  • 27. Koç BT, Oğuzoğlu TÇ. (2016). The investigation of feline parvoviruses (FPVs) into two different phylogenetic lineages in Turkey. JABS. 10(2): 04-07.
  • 28. Akkutay-Yoldar Z, Koç BT. (2020). Phylogenetic analysis of canine parvoviruses from Turkey. Med Weter. 76(01):6334–2020.
  • 29. Akkutay-Yoldar Z, Koç BT. (2019). Comparison of partial and full VP2 gene sequences of parvovirus from domestic cats in Turkey. Vet Méx. OA. 6(4): 1-12.
  • 30. Ohshima T, Mochizuki M. (2009). Evidence for recombination between feline panleukopenia virus and canine parvovirus type 2. J Vet Med Sci. 71(4):403–8.
  • 31. Decaro N, Buonavoglia C. (2012). Canine Parvovirus-a review of epidemiological and diagnostic aspects, with emphasis on type 2c. Vet Microbiol. 155(1):1–12.
  • 32. Capua I, Alexander DJ. (2009). Ecology, epidemiology and human health implications of avian influenza virus infections. In: Avian Influenza and Newcastle Disease. Milano: Springer Milan. p. 1–18.
  • 33. Durviaux S, Treanor J, Beran J, Duval X, Esen M, Feldman G, et al. (2014). Genetic and antigenic typing of seasonal influenza virus breakthrough cases from a 2008-2009 vaccine efficacy trial. Clin Vaccine Immunol. 21(3):271–9.
  • 34. Lyons DM, Lauring AS. (2018). Mutation and Epistasis in İnfluenza virus Evolution. Viruses. 10(8):3390 10080407.
  • 35. Carrat F, Flahault A. (2007). Influenza vaccine: The challenge of antigenic drift. Vaccine. 25(39–40):6852–62.
  • 36. Arai Y, Kawashita N, Daidoji T, Ibrahim MS, El-Gendy EM, Takagi T, et al. (2016). Novel polymerase gene mutations for human adaptation in clinical isolates of avian H5N1 influenza viruses. PLoS Pathog. 12(4):e1005583.
  • 37. Shao W, Li X, Goraya MU, Wang S, Chen J-L. (2017). Evolution of influenza A virus by mutation and re-assortment. Int J Mol Sci. 18(8).
  • 38. Vries RD, Duprex WP, Swart RL. (2015). Morbillivirus infections: an introduction. Viruses. 7(2):699–706.
  • 39. Laksono B, de Vries R, McQuaid S, Duprex W, de Swart R. (2016). Measles Virus Host Invasion and Pathogenesis. Viruses. 8(8):210.
  • 40. Furuse Y, Suzuki A, Oshitani H. (2010). Origin of measles virus: divergence from rinderpest virus between the 11th and 12th centuries. Virol J. 7(1):52.
  • 41. Jones Engel, Schillaci M. A, Lee B, Heidrich J, Chalise M, Kyes R. et al. (2006). Considering human–primate transmission of measles virus through the prism of risk analysis. Am. J. Primatol. 68(9):868–879.
  • 42. Babkin IV, Babkina IN. (2015). The origin of the variola virus. Viruses. 7(3):1100–1112.
  • 43. Khrustalev VV, Barkovsky EV, Khrustaleva TA. (2015). Local mutational pressures in genomes of Zaire ebolavirus and Marburg virus. Adv Bioinformatics. 2015:678587.
  • 44. Ankara Üniversitesi Açık Ders Arşivi (Müjde Eryılmaz), Erişim: https://acikders.ankara.edu.tr/pluginfile.php/18265/mod_resource/content/3/Yrd.Do%C3%A7.Dr.M%C3%BCjde%20Ery%C4%B1lmaz-viroloji-1.pdf Erişim Tarihi: 25.05.2020.

Viruslarda Genetik Değişiklere Bağlı Konakçı Değişimleri

Yıl 2021, , 77 - 82, 30.06.2021
https://doi.org/10.47027/duvetfd.827886

Öz

Viruslar ekolojide en dinamik mikro varlıklardır. Yapısı ve replikasyon stratejileri itibarıyla doğada varlıklarını sürdürmek için bir konakçıya ihtiyaç duyarlar. Viruslar genellikle replikasyon sırasında konakçısında olumsuz durumlar meydana getirirler. Virusun yapısına katacağı konakçı hücresinde sentezlenen proteinler konakçı hücre için hastalık tetikleyici unsurlar olmaktadırlar. Ekolojide değişen dengeler ve koşullar konakçı-virus ilişkisi üzerinde de sürekli bir değişime yol açmaktadır. Özellikle genomik yapıda meydana gelen değişimler virusların konakçı affinitesini de etkilemektedir. Virus genomunda meydana gelen bu değişikler ekolojide yer alan en gelişmiş canlılar olan insanların ve hayvanların sağlığı için büyük önem taşırlar. Buna en güncel örneklerden biri Coronavirus Disease-19 (COVID-19) salgını ve etkeni olan Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2)’dir. SARS-CoV-2 orijin olarak nereden veya hangi canlıdan köken aldığı kesin olarak bilinmese de yapılan genetik analizler sonucu bazı yarasa ve pangolin türlerinde bulunan coronaviruslara yakınlık gösterdiği ortaya konmuştur. Bu sonuç SARS-CoV-2’nin mutasyonlar sonucu konakçı değiştirme ihtimali yüksek olan bir virus olabileceği hipotezini güçlendirmektedir. Bu kapsamda, derlemede, zaman içerisinde genetik farklılık geçirdikten sonra konakçı affinitesi değişen viruslardan bahsedilmiştir. Ayrıca geçmiş dönemde meydana gelen bu değişiklikler göz önünde bulundurularak gelecekte meydana gelebilecek yeni konakçı değişimleri ve muhtemel hastalık salgınları hakkında da öngörüler derlememizde konu edilmiştir.

Kaynakça

  • 1.Fenner F. (1999). Genetics of animal viruses. In: Encyclopedia of Virology. Granoff A, Webster RG (eds). pp. 606–613. Saunders Elsevier, Missouri, USA
  • 2. Fleischmann WR. (2011). Viral Genetics. In: Medical Microbiology. Baron S (ed). 4th ed. Chapter 43. The University of Texas Medical Branch at Galveston, Galveston, USA
  • 3. Drake, John W, John J. Holland. (1999). Mutation rates among RNA viruses. PNAS. 96(24):13910–13913.
  • 4. Lauring AS, Frydman J, Andino R. (2013). The role of mutational robustness in RNA virus evolution. Nat Rev Microbiol. 11(5):327–36.
  • 5. Wohl S, Schaffner SF, Sabeti PC. (2016). Genomic analysis of viral outbreaks. Annu Rev Virol. 3(1):173–95.
  • 6. Algül Ö, Dar BPW, Öksüz Z. (2019). Antiviral ilaçlardaki gelişmeler ve değerlendirilmesi. MUTFTD. 9(2):160-170.
  • 7. Yeşi̇lbağ K. (2002). Mutasyonel Değişimler ve Veteriner Virolojideki Önemi. Uludağ Üniv Vet Fak Derg. 21:125–131.
  • 8. Lehnert S. (2007). Biomolecular Action of ionizing radiation. Boca Raton, FL: CRC Press.
  • 9. Parrish CR, Holmes EC, Morens DM, Park EC. (2008). Cross-Species Virus Transmission and the Emergence of New Epidemic Diseases. Microbiol. Mol. Biol. Rev. 72(3):457–470.
  • 10. Geoghegan JL, Duchêne S, Holmes EC. (2017). Comparative analysis estimates the relative frequencies of co-divergence and cross-species transmission within viral families. PLoS Pathog. 13(2):1006215.
  • 11. Petrova VN, Russell CA. (2018). The evolution of seasonal İnfluenza viruses. Nat. Rev. Microbiol. 16(1):47–60.
  • 12. Huelsenbeck JP, Bull JJ, Clifford CW. (1996). Cunningham. Combining data in phylogenetic analysis. Trends Ecol. Evol. 11. 4:152–158.
  • 13. Oshiro LS, Schieble JH, Lennette EH. (1971) Electron microscopic studies of coronavirus. J Gen Virol. 12(2):161–8.
  • 14. Wang LF, Shi Z, Zhang S, Field H, Daszak P, Eaton BT. (2006). of bats and SARS. Emerg. Infect. Dis. 12(12):1834.
  • 15. Shereen MA, Khan S, Kazmi A, Bashir N, Siddique R. (2020). COVID-19 infection: Origin, transmission, and characteristics of human coronaviruses. Journal of Advanced Research. 24:91–98.
  • 16. Wang N, Shi X, Jiang L, Zhang S, Wang D, Tong P, et al. (2013). Structure of MERS-CoV spike receptor-binding domain complexed with human receptor DPP4. Cell Res. 23(8):986–93.
  • 17. Benvenuto D, Angeletti S, Giovanetti M, Bianchi M, Pascarella S, Cauda R, et al. (2020). Evolutionary analysis of SARS-CoV-2: how mutation of Non-Structural Protein 6 (NSP6) could affect viral autophagy. J Infect. 81(1):e24–7.
  • 18. Sağlık Bilimleri Üniversitesi (SBÜ) (Taner Yıldırmak) (2017), Erişim: https://www.klimik.org.tr/wp-content/uploads/2017/05/HIV B%C4%B0YOLOJ%C4%B0S%C4%B0-VE-PATOGENEZ%C4%B0-Taner-YILDIRMAK.pdf Erişim tarihi: 17.04.2020.
  • 19. Blood, German Advisory Committee. (2016). Human immunodeficiency virus (HIV). Transfus Med Hemother. 43(3):203.
  • 20. DEU (Aslı Sade Memişoğlu) (2014), Erişim: http://kisi.deu.edu.tr//asli.memisoglu/Evrim/1-Evrimsel%20d%c3%bc%c5%9f%c3%bcnce%20i%c3%a7in%20bir%20%c3%b6rnek-HIV.pdf Erişim tarihi: 27.05.2020.
  • 21. Blanpain C, Libert F, Vassart G, Parmentier M. (2002). CCR5 and HIV infection. Recept Channels. 8(1):19–31.
  • 22.PAÜ Tıp Fakültesi (Selda Sayın Kutlu) (2017). Erişim: https://www.klimik.org.tr/wp-content/uploads/2017/12/HIV-Patogenez-Klinik-ve-%C4%B0mmunolojik-S%C4%B1n%C4%B1flama-Selda-SAYIN-KUTLU.pdf Erişim Tarihi: 20.04.2020.
  • 23. Kelly WR. (1978). An Enteric disease of dogs resembling feline panleucopaenia. Aust Vet J. 54(12):593–593.
  • 24. Zhou P, Zeng W, Zhang X, Li S. (2017). The genetic evolution of canine parvovirus - A new perspective. PLoS One. 12(3):e0175035.
  • 25. Battilani M, Scagliarini A, Ciulli S, Morganti L, Prosperi S. (2006). High genetic diversity of the VP2 gene of a canine parvovirus strain detected in a domestic cat. Virology. 352(1):22–6.
  • 26. Decaro N, Desario C, Addie DD, Martella V, Vieira MJ, Elia G, et al. (2007). The study molecular epidemiology of canine parvovirus, Europe. Emerg Infect Dis. 13(8):1222–4.
  • 27. Koç BT, Oğuzoğlu TÇ. (2016). The investigation of feline parvoviruses (FPVs) into two different phylogenetic lineages in Turkey. JABS. 10(2): 04-07.
  • 28. Akkutay-Yoldar Z, Koç BT. (2020). Phylogenetic analysis of canine parvoviruses from Turkey. Med Weter. 76(01):6334–2020.
  • 29. Akkutay-Yoldar Z, Koç BT. (2019). Comparison of partial and full VP2 gene sequences of parvovirus from domestic cats in Turkey. Vet Méx. OA. 6(4): 1-12.
  • 30. Ohshima T, Mochizuki M. (2009). Evidence for recombination between feline panleukopenia virus and canine parvovirus type 2. J Vet Med Sci. 71(4):403–8.
  • 31. Decaro N, Buonavoglia C. (2012). Canine Parvovirus-a review of epidemiological and diagnostic aspects, with emphasis on type 2c. Vet Microbiol. 155(1):1–12.
  • 32. Capua I, Alexander DJ. (2009). Ecology, epidemiology and human health implications of avian influenza virus infections. In: Avian Influenza and Newcastle Disease. Milano: Springer Milan. p. 1–18.
  • 33. Durviaux S, Treanor J, Beran J, Duval X, Esen M, Feldman G, et al. (2014). Genetic and antigenic typing of seasonal influenza virus breakthrough cases from a 2008-2009 vaccine efficacy trial. Clin Vaccine Immunol. 21(3):271–9.
  • 34. Lyons DM, Lauring AS. (2018). Mutation and Epistasis in İnfluenza virus Evolution. Viruses. 10(8):3390 10080407.
  • 35. Carrat F, Flahault A. (2007). Influenza vaccine: The challenge of antigenic drift. Vaccine. 25(39–40):6852–62.
  • 36. Arai Y, Kawashita N, Daidoji T, Ibrahim MS, El-Gendy EM, Takagi T, et al. (2016). Novel polymerase gene mutations for human adaptation in clinical isolates of avian H5N1 influenza viruses. PLoS Pathog. 12(4):e1005583.
  • 37. Shao W, Li X, Goraya MU, Wang S, Chen J-L. (2017). Evolution of influenza A virus by mutation and re-assortment. Int J Mol Sci. 18(8).
  • 38. Vries RD, Duprex WP, Swart RL. (2015). Morbillivirus infections: an introduction. Viruses. 7(2):699–706.
  • 39. Laksono B, de Vries R, McQuaid S, Duprex W, de Swart R. (2016). Measles Virus Host Invasion and Pathogenesis. Viruses. 8(8):210.
  • 40. Furuse Y, Suzuki A, Oshitani H. (2010). Origin of measles virus: divergence from rinderpest virus between the 11th and 12th centuries. Virol J. 7(1):52.
  • 41. Jones Engel, Schillaci M. A, Lee B, Heidrich J, Chalise M, Kyes R. et al. (2006). Considering human–primate transmission of measles virus through the prism of risk analysis. Am. J. Primatol. 68(9):868–879.
  • 42. Babkin IV, Babkina IN. (2015). The origin of the variola virus. Viruses. 7(3):1100–1112.
  • 43. Khrustalev VV, Barkovsky EV, Khrustaleva TA. (2015). Local mutational pressures in genomes of Zaire ebolavirus and Marburg virus. Adv Bioinformatics. 2015:678587.
  • 44. Ankara Üniversitesi Açık Ders Arşivi (Müjde Eryılmaz), Erişim: https://acikders.ankara.edu.tr/pluginfile.php/18265/mod_resource/content/3/Yrd.Do%C3%A7.Dr.M%C3%BCjde%20Ery%C4%B1lmaz-viroloji-1.pdf Erişim Tarihi: 25.05.2020.
Toplam 44 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Veteriner Cerrahi
Bölüm Derleme
Yazarlar

Selin Nur Kızılkoca 0000-0002-8766-6379

Bahattin Taylan Koç 0000-0002-4279-6233

Mehmet Tolga Tan 0000-0001-5253-4010

Yayımlanma Tarihi 30 Haziran 2021
Kabul Tarihi 25 Ocak 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Kızılkoca, S. N., Koç, B. T., & Tan, M. T. (2021). Viruslarda Genetik Değişiklere Bağlı Konakçı Değişimleri. Dicle Üniversitesi Veteriner Fakültesi Dergisi, 14(1), 77-82. https://doi.org/10.47027/duvetfd.827886
AMA Kızılkoca SN, Koç BT, Tan MT. Viruslarda Genetik Değişiklere Bağlı Konakçı Değişimleri. Dicle Üniv Vet Fak Derg. Haziran 2021;14(1):77-82. doi:10.47027/duvetfd.827886
Chicago Kızılkoca, Selin Nur, Bahattin Taylan Koç, ve Mehmet Tolga Tan. “Viruslarda Genetik Değişiklere Bağlı Konakçı Değişimleri”. Dicle Üniversitesi Veteriner Fakültesi Dergisi 14, sy. 1 (Haziran 2021): 77-82. https://doi.org/10.47027/duvetfd.827886.
EndNote Kızılkoca SN, Koç BT, Tan MT (01 Haziran 2021) Viruslarda Genetik Değişiklere Bağlı Konakçı Değişimleri. Dicle Üniversitesi Veteriner Fakültesi Dergisi 14 1 77–82.
IEEE S. N. Kızılkoca, B. T. Koç, ve M. T. Tan, “Viruslarda Genetik Değişiklere Bağlı Konakçı Değişimleri”, Dicle Üniv Vet Fak Derg, c. 14, sy. 1, ss. 77–82, 2021, doi: 10.47027/duvetfd.827886.
ISNAD Kızılkoca, Selin Nur vd. “Viruslarda Genetik Değişiklere Bağlı Konakçı Değişimleri”. Dicle Üniversitesi Veteriner Fakültesi Dergisi 14/1 (Haziran 2021), 77-82. https://doi.org/10.47027/duvetfd.827886.
JAMA Kızılkoca SN, Koç BT, Tan MT. Viruslarda Genetik Değişiklere Bağlı Konakçı Değişimleri. Dicle Üniv Vet Fak Derg. 2021;14:77–82.
MLA Kızılkoca, Selin Nur vd. “Viruslarda Genetik Değişiklere Bağlı Konakçı Değişimleri”. Dicle Üniversitesi Veteriner Fakültesi Dergisi, c. 14, sy. 1, 2021, ss. 77-82, doi:10.47027/duvetfd.827886.
Vancouver Kızılkoca SN, Koç BT, Tan MT. Viruslarda Genetik Değişiklere Bağlı Konakçı Değişimleri. Dicle Üniv Vet Fak Derg. 2021;14(1):77-82.