Araştırma Makalesi
BibTex RIS Kaynak Göster

-KAPROLAKTON İLE KİMYASAL MODİFİYE EDİLEN AHŞAP MALZEMELERİN TERMAL KARAKTERİZASYONU

Yıl 2017, Cilt: 6 Sayı: 3, 839 - 846, 15.12.2017

Öz

Yenilenebilir biyobozunur yeşil
biyomalzeme olarak ahşap malzemeler birçok uygulama alanında kullanılmaktadır.
Bunlara örnek olarak; mobilya, kompozit malzemeler, konstrüksiyon, iç mimari
uygulamalar, yapı vb. verilebilir. Pozitif özelliklerinin yanında ahşap malzeme
bazı dezavantaj sayılabilecek özellikleri de bünyesinde barındırmaktadır.
Bunlar düşük boyutsal stabilite ve biyolojik dayanımdır. Arzu edilmeyen bu
özellikler ahşap malzemelerin potansiyel uygulama alanlarını kısıtlamaktadır.
Ahşap malzemelerin son kullanım performans özelliklerini geliştirmek için
çeşitli modifikasyon yöntemleri geliştirilmiştir. Bu bilimsel çalışmada,
çeşitli ahşap malzemeler en çok gelecek vadeden sentetik biyobozunur
polimerlerden birisi olan poli(ε-kaprolakton) (PCL) ile kimyasal olarak
modifiye edilmiştir. Ahşap malzemelerin termal karakteristiklerini ortaya
koymak için dinamik mekanik termal analizler (DMTA) ile termogravimetrik
analizler (TGA) gerçekleştirilmiştir. DMTA ile ahşap malzemelerin storage
modulus ve loss modulus değerleri belirlenirken, TGA ile termal stabilitesi ve
ağırlık kayıpları tespit edilmiştir. Bu araştırma sonucu elde edilen veriler
göstermiştir ki, PCL ile yapılan kimyasal modifikasyon ahşap malzemelerin
termal özelliklerini etkilemiştir.

Kaynakça

  • [1]. Hill, C.A.S., (2006). Wood Modification: Chemical, Thermal and Other Processes, Wiley Series In Renewable Resources, John Wiley & Sons, Chichester, England. [2]. Norimoto, M. and Gril, J., (1993). Structure and Properties of Chemically Treated Woods. In: Recent Research on Wood and Wood-based Materials, Shiraishi, N., Kajita, H. and Norimoto, M. (Eds.). Elsevier, Barking, UK. [3]. Rowell, R.M., (1983). Chemical modification of wood. Forest Products Abstracts 6(12): 363 – 382. [4]. Kumar, S., (1994). Chemical modification of wood. Wood and Fiber Science 26(2): 270 – 280. [5]. Militz, H., Beckers, E.P.J., Homan, W.J., (1997). Modification of solid wood: research and practical potential. In: International Research Group on Wood Preservation, 28th Annual Meeting, Vancouver, Canada. [6]. Roussel, C., Marchetti, V., Lemor, A., Wozniak, E., Loubinoux, B., Gérardin, P. 2001. Chemical modification of wood by polyglycerol/maleic anhydride treatment. Holzforschung 55: 57 – 62. [7]. Rowell R.M., (2005). Handbook of Wood Chemistry and Wood Composites, CRC Press, Boca Raton, Florida, USA. [8]. Rowell, R.M., (2006). Chemical modification of wood: A short review. Wood Material Science & Engineering 1(1): 29 – 33. [9]. Militz, H., Lande, S., (2009). Challenges in wood modification technology on the way to practical applications. Wood Material Science and Engineering 4(1/2): 23 – 29. [10]. Mattos, B.D., Lourencon, T.V., Serrano, L., Labidi, J., Gatto, D.A. (2015). Chemical modification of fast-growing eucalyptus wood. Wood Science and Technology 49(2): 273 – 288. [11]. Gerardin, P., (2016). New alternatives for wood preservation based on thermal and chemical modification of wood – a review. Annals of Forest Science 73: 559 – 570. [12]. Mantanis, G.I., (2017). Chemical modification of wood by acetylation or furfurylation: a review of the present scaled-up technologies. BioResources 12(2): 4478 – 4489. [13]. Persson, P., [2004]. Strategies for cellulose fiber modification. PhD Thesis, KTH The Royal Institute of Technology, Sweden. [14]. Braganca, F.C., Rosa, D.S., (2003). Thermal, mechanical and morphological analysis of poly(ε-caprolactone), cellulose acetate and their blends. Polymers for Advanced Technologies 14: 669 – 675. [15]. Xu, Y., Wang, C., Stark, N.M., Cai, Z., Chu, C., (2012). Miscibility and thermal behavior of poly (-caprolactone)/long-chain ester of cellulose blends. Carbohydrate Polymers 88: 422 – 427. [16]. Ermeydan, M.A., Cabane, E., Hass, P., Koetz, J., and Burgert, I. (2014). Fully biodegradable modification of wood for improvement of dimensional stability and water absorption properties by poly(ε-caprolactone) grafting into the cell walls, Green Chemistry, 16, 3313-3321. [17]. Ermeydan, M.A., [2016], Chemical modification of spruce wood with combination of mesyl chloride and poly(ε-caprolactone) for improvement of dimensional stability and water absorption properties. Kastamonu University Journal of Forestry Faculty 16(2):541 – 552. [18]. Candan, Z., Yildirim, M., Satir, A., Ermeydan, M.A., Gonultas, O., [2017]. Hydrophobicity of ε-caprolactone-modified wood materials. COST Action FP1407 3rd Conference: Wood Modification Research and Applications, Co-organized with Society of Wood Science and Technology & The European Conference of Wood modification. September 13 – 15, 2017, Austria.

THERMAL CHARACTERIZATION OF CHEMICALLY MODIFIED WOOD MATERIALS BY ε-CAPROLACTONE

Yıl 2017, Cilt: 6 Sayı: 3, 839 - 846, 15.12.2017

Öz

Wood materials as renewable biodegradable green
biomaterials are used in many applications such as furniture, composite
materials, construction, interior design, building etc. However, wood materials
have some disadvantageous which are low dimensional stability and biological
resistance. These undesired properties restrict end-use potential of wood
materials. Various modification techniques have been developed to enhance its
end-use performance properties. In this work, wood materials were chemically
modified with poly(ε-caprolactone) (PCL) which is one of the most promising
synthetic biodegradable polymers. Dynamic mechanical thermal analysis (DMTA)
and thermogravimetric analysis (TGA) were carried out to evaluate thermal
characteristics of the wood materials. Storage modulus and loss modulus values
were determined with DMTA, while thermal stability and weight loss were studied
with TGA. The findings of this present work showed that the chemical
modification of the wood materials by PCL affected the thermal characteristics.

Kaynakça

  • [1]. Hill, C.A.S., (2006). Wood Modification: Chemical, Thermal and Other Processes, Wiley Series In Renewable Resources, John Wiley & Sons, Chichester, England. [2]. Norimoto, M. and Gril, J., (1993). Structure and Properties of Chemically Treated Woods. In: Recent Research on Wood and Wood-based Materials, Shiraishi, N., Kajita, H. and Norimoto, M. (Eds.). Elsevier, Barking, UK. [3]. Rowell, R.M., (1983). Chemical modification of wood. Forest Products Abstracts 6(12): 363 – 382. [4]. Kumar, S., (1994). Chemical modification of wood. Wood and Fiber Science 26(2): 270 – 280. [5]. Militz, H., Beckers, E.P.J., Homan, W.J., (1997). Modification of solid wood: research and practical potential. In: International Research Group on Wood Preservation, 28th Annual Meeting, Vancouver, Canada. [6]. Roussel, C., Marchetti, V., Lemor, A., Wozniak, E., Loubinoux, B., Gérardin, P. 2001. Chemical modification of wood by polyglycerol/maleic anhydride treatment. Holzforschung 55: 57 – 62. [7]. Rowell R.M., (2005). Handbook of Wood Chemistry and Wood Composites, CRC Press, Boca Raton, Florida, USA. [8]. Rowell, R.M., (2006). Chemical modification of wood: A short review. Wood Material Science & Engineering 1(1): 29 – 33. [9]. Militz, H., Lande, S., (2009). Challenges in wood modification technology on the way to practical applications. Wood Material Science and Engineering 4(1/2): 23 – 29. [10]. Mattos, B.D., Lourencon, T.V., Serrano, L., Labidi, J., Gatto, D.A. (2015). Chemical modification of fast-growing eucalyptus wood. Wood Science and Technology 49(2): 273 – 288. [11]. Gerardin, P., (2016). New alternatives for wood preservation based on thermal and chemical modification of wood – a review. Annals of Forest Science 73: 559 – 570. [12]. Mantanis, G.I., (2017). Chemical modification of wood by acetylation or furfurylation: a review of the present scaled-up technologies. BioResources 12(2): 4478 – 4489. [13]. Persson, P., [2004]. Strategies for cellulose fiber modification. PhD Thesis, KTH The Royal Institute of Technology, Sweden. [14]. Braganca, F.C., Rosa, D.S., (2003). Thermal, mechanical and morphological analysis of poly(ε-caprolactone), cellulose acetate and their blends. Polymers for Advanced Technologies 14: 669 – 675. [15]. Xu, Y., Wang, C., Stark, N.M., Cai, Z., Chu, C., (2012). Miscibility and thermal behavior of poly (-caprolactone)/long-chain ester of cellulose blends. Carbohydrate Polymers 88: 422 – 427. [16]. Ermeydan, M.A., Cabane, E., Hass, P., Koetz, J., and Burgert, I. (2014). Fully biodegradable modification of wood for improvement of dimensional stability and water absorption properties by poly(ε-caprolactone) grafting into the cell walls, Green Chemistry, 16, 3313-3321. [17]. Ermeydan, M.A., [2016], Chemical modification of spruce wood with combination of mesyl chloride and poly(ε-caprolactone) for improvement of dimensional stability and water absorption properties. Kastamonu University Journal of Forestry Faculty 16(2):541 – 552. [18]. Candan, Z., Yildirim, M., Satir, A., Ermeydan, M.A., Gonultas, O., [2017]. Hydrophobicity of ε-caprolactone-modified wood materials. COST Action FP1407 3rd Conference: Wood Modification Research and Applications, Co-organized with Society of Wood Science and Technology & The European Conference of Wood modification. September 13 – 15, 2017, Austria.
Toplam 1 adet kaynakça vardır.

Ayrıntılar

Bölüm Makaleler
Yazarlar

Zekİ Candan

Mahmut Ali Ermeydan Bu kişi benim

Oktay Gönültaş Bu kişi benim

Yayımlanma Tarihi 15 Aralık 2017
Yayımlandığı Sayı Yıl 2017 Cilt: 6 Sayı: 3

Kaynak Göster

APA Candan, Z., Ermeydan, M. A., & Gönültaş, O. (2017). -KAPROLAKTON İLE KİMYASAL MODİFİYE EDİLEN AHŞAP MALZEMELERİN TERMAL KARAKTERİZASYONU. İleri Teknoloji Bilimleri Dergisi, 6(3), 839-846.
AMA Candan Z, Ermeydan MA, Gönültaş O. -KAPROLAKTON İLE KİMYASAL MODİFİYE EDİLEN AHŞAP MALZEMELERİN TERMAL KARAKTERİZASYONU. İleri Teknoloji Bilimleri Dergisi. Aralık 2017;6(3):839-846.
Chicago Candan, Zekİ, Mahmut Ali Ermeydan, ve Oktay Gönültaş. “-KAPROLAKTON İLE KİMYASAL MODİFİYE EDİLEN AHŞAP MALZEMELERİN TERMAL KARAKTERİZASYONU”. İleri Teknoloji Bilimleri Dergisi 6, sy. 3 (Aralık 2017): 839-46.
EndNote Candan Z, Ermeydan MA, Gönültaş O (01 Aralık 2017) -KAPROLAKTON İLE KİMYASAL MODİFİYE EDİLEN AHŞAP MALZEMELERİN TERMAL KARAKTERİZASYONU. İleri Teknoloji Bilimleri Dergisi 6 3 839–846.
IEEE Z. Candan, M. A. Ermeydan, ve O. Gönültaş, “-KAPROLAKTON İLE KİMYASAL MODİFİYE EDİLEN AHŞAP MALZEMELERİN TERMAL KARAKTERİZASYONU”, İleri Teknoloji Bilimleri Dergisi, c. 6, sy. 3, ss. 839–846, 2017.
ISNAD Candan, Zekİ vd. “-KAPROLAKTON İLE KİMYASAL MODİFİYE EDİLEN AHŞAP MALZEMELERİN TERMAL KARAKTERİZASYONU”. İleri Teknoloji Bilimleri Dergisi 6/3 (Aralık 2017), 839-846.
JAMA Candan Z, Ermeydan MA, Gönültaş O. -KAPROLAKTON İLE KİMYASAL MODİFİYE EDİLEN AHŞAP MALZEMELERİN TERMAL KARAKTERİZASYONU. İleri Teknoloji Bilimleri Dergisi. 2017;6:839–846.
MLA Candan, Zekİ vd. “-KAPROLAKTON İLE KİMYASAL MODİFİYE EDİLEN AHŞAP MALZEMELERİN TERMAL KARAKTERİZASYONU”. İleri Teknoloji Bilimleri Dergisi, c. 6, sy. 3, 2017, ss. 839-46.
Vancouver Candan Z, Ermeydan MA, Gönültaş O. -KAPROLAKTON İLE KİMYASAL MODİFİYE EDİLEN AHŞAP MALZEMELERİN TERMAL KARAKTERİZASYONU. İleri Teknoloji Bilimleri Dergisi. 2017;6(3):839-46.