ELEKTROMANYETİK FIRLATICILAR
Yıl 2018,
Cilt: 7 Sayı: 1, 97 - 106, 28.06.2018
Çagdas Tunceroğlu
,
Uğur Hasırcı
,
Engin Hüner
,
Zülkif Sarı
Öz
Bu çalışmada Elektromanyetik Fırlatıcı’ların
çalışma prensibi, yapısı, türleri, bu tür fırlatıcılar için güç kaynakları
incelenmiştir.
Kaynakça
- [1]. Harry Fair, 2003: The Electromagnetic Launch Technology Revolution, University of Texas at Austin, USA.
- [2]. Akyazı, Ö. ve Akpınar, A. S. 2008: Elektromanyetik Fırlatıcılar, Fen ve Mühendislik Bilgisi Dergisi, Fırat Üniversitesi, Türkiye, 29 Ocak, sf. 117-126..
- [3]. https://www.rappinstruments.de/accelerator/Coilgun/coilgun.html.
- [4]. https://www.sfwar.com/pyodogi/pyodogi0001b.html.
- [5]. https://www.nas.nasa.gov/.../Nowicki/SPBI112.html.
- [6]. http://members.home.nl/yja.wolters/Coilgun/Coilgun1.html.
- [7]. http://www.physics4u.gr/articles/2006/electromagnetic_propulsion.html.
- [8]. http://www.global-defence.com/1997/High-speed.html.
- [9]. H.D. Fair, “Electromagnetic Launch Science and Technology in the United States Enters a New Era”, IEEE Transaction on Magnetics, Vol. 41, No. 1, pp. 158–164, January 2005.
- [10]. M.Liao, Z.Zabar, D.Czarkowski, E.Levi and L.Birenbaum, “On the Design of as a Rapid- Fire Grenade Launcher” IEEE Transaction on Magnetics, Vol.35, No.1, January 1999.
- [11]. http://www.coilgun.eclipse.co.uk/electromagnetic_pistol.html.
- [12]. Y. Shirong, W. Ying, C. Shanbao, P. Guohua, L. Xuquiong, W. Wei, “A Novel Type Rail- Coil Hybrid Electromagnetic Launcher“, IEEE Transaction on Magnetics, Vol. 41, No. 1, pp. 266–267, 2005.
- [13]. A.Balikci, “Flywheel Motor/Generator Set as an Energy Source for Coil Launchers”, Ph. D. Dissertation, Polytechnic University, June 2003.
- [14]. E. Bicak, “Elektromagnetik Fırlatıcı“, Lisans bitirme tezi, Gebze Yüksek Teknoloji Enstitüsü, Gebze, Kocaeli, Haziran 2005.
- [15]. Zhang, C., Wu, P., Tseng, K.J. 2005. “FEM Analyses for the Design and Modeling of a Novel Flywheel Energy Storage System Assisted by Integrated Magnetic Bearing”, Electric Machines and Drives International Conference IEEE, 1157-1164.
- [16]. Nguyen, T.D., Tseng, K.J., Zhang, S., Nguyen, H.T. 2011. “A Novel Axial Flux Permanent Magnet Machine for Flywheel Energy Storage System: Design and Analysis”, IEEE Transaction on Industrial Electroninc”, vol.(58), No.9, September, 3784-3794.
- [17]. Zhou, L., Qi, Z. 2009. “Modeling and Simulation of Flywheel Energy Storage Ssytem with IPMSM for Voltage Sags in Distributed Power Network”, International Conference on Mechatronics and Automation, August, China, 5046-5051.
- [18]. Abdel-Khalik, A., Elserougi, A., Massoud, A., Ahmed, S. 2013. “A Power Control Strategy for Flywheel Doubly-Fed Induction Machine Storage System Using Artificial Neural Network”, Electric Power System Research, Vol.(96), March, 267-276.
- [19]. Kato, K., Ishigma, S., Nakajima, Y., Arai, H., Ueda, T., Iwata, T., Ito, Y., Sugao, K. 2014. “10MW, 3.3MWh Energy Storage System consisting of 4000 Flywheels controlled by ICT network for Short Cycle Power Fluctuation Compensation”, The 2014 International Power Electronics Conference IEEE, 403-408.
- [20]. Zhang, C., Tseng, K.J., Nguyen, T.D. 2010. “Design and Loss Analysis of a High Speed Flywheel Energy Storage System Based on Axial Flux Flywheel Rotor Electric Machines”, IPEC Conference IEEE, October, Singapore, 886-891.
- [21]. Fu, X. 2010. “A Novel Design for Flywheel Battery of Electric Vehicles”, IEEE International Conference on Intelligent System Design and Engineering Application”, 107- 111.
- [22]. Chu, H.Y., Fan, Y., Zhang, C.S. 2005. “A Novel Design for the Flywheel Energy Storage System”, Electrical Machines and Systems ICEMS Proceedings of the Eighth International Conference on”, Vol.(2), September, 1583-1587.
- [23]. Zhang, C., Tseng, K.J. 2004. “Design and FEM Analysis of a Flywheel Energy Storage System Assisted by Integrated Magnetic Bearings”, IECON Industrial Electronics Society 30th Annual Conference IEEE, Vol.(2), November, Busan, Korea, 1634-1639.
- [24]. Zhang, C., Tseng, K.J. 2007. “A Novel Flywheel Energy Storage System With Partially- Self-Bearing Flywheel Rotor”, IEEE Transactions on Energy Conversion, Vol.(22), No.2, 477-487.
- [25]. Dong, J., Huang, Y., Shen, P., Jin, L., Ge, B. 2012. “An Axial Flux Flywheel Motor/Generator for Pulsed Power Application”, IEEE Energy Conversion Congress and Exposition(ECCE), Raleigh, NC, September, 678-683.
- [26]. Junfeng, W. 2012. “Design of a Miniature Axial Flux Flywheel Motor with PCB Winding for Nanosatellites”, Optoelectronics and Microelectronics ICOM International Conference, 544-548.
- [27]. Yi, J., Lee, K.W., Kim, B., Ko, J., Jeong, S., Noh, M.D., Lee, S.S. 2007. “Micro Flywheel Energy Storage System with Axial Flux Machine”, Advanced Intelligent Mechatronics IEEE/ASME International Conference on, September, Zurich, 1-6.
- [28]. Qian, X. 2010. “Application Research of Flywheel Battery in the Wind and Solar Complementary Power Generation”, Computer Application and System Modeling International Conference on, Vol.(13), 546-550.
- [29]. Diaz-Gonzalez, F., Sumper, A., Gomis-Bellmunt, O., Bianchi, F.D. 2013. “Energy Management of Flywheel Based Energy Storage Device for Wind Power Smoothing”, Applied Energy, Vol.(110), 207-219.
- [30]. Santiago, J., Oliveira, J.G., Lundin, J., Larsson, A., Bernhoff, H. 2008. “Losses in Axial Flux Permanent Magnet Coreless Flywheel Energy Storage Systems”, 18th International Conference on Electric Machines ICEM, 1-5.
- [31]. Lee, S.J., Kim, J.H., Song, B.S., Kim, J.H. 2013. “Coil Gun Electromagnetic Launcher (EML) System with Multi-Stage Electromagnetic Coils”, Journal of Magnetics, Vol.(18), No.4, 481-486.
- [32]. Huang, S., Luo, J., Leonardi, F., Lipo, T.A. 1999. “A Comprasion of Power Density for Axial Flux Machines Based on General Purpose Sizing Equations”, IEEE Transactions on Energy Conversion, Vol(14), No.2, 185-192.
- [33]. Huner, E., Akuner, C. 2012. “Axial-Flux Synchronous Machines Compared with Different Stator Structures for Use in Working”, Prezeglad Elektrotechniczny.
- [34]. Aydın, M., Qu, R., Lipo, T.A. 2003. “Cogging Torque Minimization Technique for Multiple-Rotor, Axial-Flux, Surface-Mounted-PM Motors : Alternating Magnet Pole-Arcs in Facing Rotors”, IEEE Transactions on Energy Conversion, Vol(14), No.2, 185-192.
- [35]. Zabar, Z., Naot, Y., Birenbaum, L., Levi, E., Joshi, P. N. 1989. “Design and power conditioning for the coilgun”, IEEE Transactions on Magnetics, 25(1), 627-631.
- [36]. Hasirci, U., Balikci, A. 2009. “Design, implementation and test of a coilgun-type electromagnetic launcher prototype”, in Proc. 6th International Conference on Recent Advances in Space Technologies, RAST’13, 815-820, Istanbul, Turkey.
- [37]. Hasirci, U., Balikci, A. 2013. “Design, fabrication and test of a 250 m/s generator-driven coil launcher”, in Proc. 4th International Conference on Recent Advances in Space Technologies, RAST’09, 237-240, Istanbul, Turkey.
- [38]. Hasirci, U., Balikci, A., Zabar, Z., Birenbaum, L. 2011. “Concerning the design of a novel electromagnetic launcher for earth-to-orbit micro- and nanosatellite systems”, IEEE Transactions on Plasma Science, 39(1), 498-503.
- [39]. Hasirci, U., Balikci, A., Zabar, Z., Birenbaum, L. 2013. “Experimental performance investigation of a novel magnetic levitation system”, IEEE Transactions on Plasma Science, 41(5), 1174-1181.
- [40]. Hasirci, U. 2014. “Nonlinear control of axial flux flywheel motor/generator set of coil launchers”, in Proc. 17th International Symposium on Electrmagnetic Launch Technology, 1-5, San Diego, CA, USA.