Research Article
BibTex RIS Cite

Comparison of the Effects of Different Decontamination Methods on Staphylococcus Aureus Biofilm

Year 2024, Volume: 51 Issue: 3, 89 - 95, 31.12.2024
https://doi.org/10.52037/eads.2024.0015

Abstract

Purpose: The current in-vitro study aims to compare the effectiveness of various mechanical decontamination modalities in the elimination of Staphylococcus aureus biofilm from titanium surfaces using qualitative and quantitative techniques.
Materials and methods: A total of 48 titanium discs were inoculated with Staphylococcus aureus and randomly allocated into four experimental groups consisting of control, plastic curettes (PC), ultrasonic-driven plastic tips (UPT), and ultrasonic-driven stainless-steel tips (UST). Following decontamination procedures, colony-forming units and viable biomass were analyzed to identify the biofilm removal efficacy of the treatments and the viability of bacteria remaining on the surface. Biofilm structure was assessed by confocal laser scanning microscopy and scanning electron microscopy. Analysis of variance and post hoc Tukey tests were applied for comparisons.
Results: Reductions in both colony counts and variable biomass following the decontamination procedure were significant in all treatment groups (p=0,000). Although the highest reduction in colony count was determined in the UST and the lowest in the PC group, the difference was not statistically significant between treatment groups (p = 0.246). Nonetheless, the reduction in viable biomass in the UST group was greater than in the UPT and PC groups (p=0.005, p=0.000, respectively).
Conclusion: Ultrasonic-driven instruments are more effective than plastic curettes in removing the biofilm that colonizes the titanium surfaces in the initial stages. Stainless steel tips provide better elimination of microbial biofilm compared to plastic instruments, but they alter the surface topography of roughed titanium surfaces more than plastic curettes.

Ethical Statement

Since sources obtained from humans or animals were not used in this study, ethics committee approval was not obtained.

Supporting Institution

This study was funded by the Trakya University Scientific Research Projects, (Project Number: 2021/89).

Project Number

This study was funded by the Trakya University Scientific Research Projects, (Project Number: 2021/89).

Thanks

Authors would like to thank Bioinfinity Implants (Istanbul, Turkey) for supporting this research by providing titanium disc specimens.

References

  • Alcoforado GA, Rams TE, Feik D, Slots J. Microbial aspects of failing osseointegrated dental implants in humans. J Parodontol. 1991;10(1):11–18.
  • Berglundh T, Jepsen S, Stadlinger B, Terheyden H. Peri-implantitis and its prevention. Clin Oral Implants Res. 2019;30(2):150–155. doi:10.1111/clr.13401.
  • Fürst MM, Salvi GE, Lang NP, Persson GR. Bacterial colonization immediately after installation on oral titanium implants. Clin Oral Implants Res. 2007;18(4):501–508. doi:10.1111/j.1600-0501.2007.01381.x.
  • Mombelli A, Lang NP. Microbial aspects of implant dentistry. Periodontol 2000. 1994;4:74–80. doi:10.1111/j.1600-0757.1994.tb00007.x.
  • Persson GR, Renvert S. Cluster of bacteria associated with peri-implantitis. Clin Implant Dent Relat Res. 2014;16(6):783–793. doi:10.1111/cid.12052.
  • Albertini M, López-Cerero L, O’Sullivan MG, Chereguini CF, Ballesta S, Ríos V, et al. Assessment of periodontal and opportunistic flora in patients with peri-implantitis. Clin Oral Implants Res. 2015;26(8):937–941. doi:10.1111/clr.12387.
  • Salvi GE, Furst MM, Lang NP, Persson GR. One-year bacterial colonization patterns of Staphylococcus aureus and other bacteria at implants and adjacent teeth. Clin Oral Implants Res. 2008;19(3):242–248. doi:10.1111/j.1600-0501.2007.01470.x.
  • Cosgarea R, Roccuzzo A, Jepsen K, Sculean A, Jepsen S, Salvi GE. Efficacy of mechanical/physical approaches for implant surface decontamination in non-surgical submarginal instrumentation of peri-implantitis. A systematic review. J Clin Periodontol. 2023;50 Suppl 26:188–211. doi:10.1111/jcpe.13762.
  • Meyle J. Mechanical, chemical and laser treatments of the implant surface in the presence of marginal bone loss around implants. Eur J Oral Implantol. 2012;5 Suppl:71–81.
  • Kawashima H, Sato S, Kishida M, Ito K. A comparison of root surface instrumentation using two piezoelectric ultrasonic scalers and a hand scaler in vivo. J Periodontal Res. 2007;42(1):90–95. doi:10.1111/j.1600-0765.2006.00924.x.
  • Sahrmann P, Winkler S, Gubler A, Attin T. Assessment of implant surface and instrument insert changes due to instrumentation with different tips for ultrasonic-driven debridement. BMC Oral Health. 2021;21(1):25. doi:10.1186/s12903-020-01384-0.
  • Keim D, Nickles K, Dannewitz B, Ratka C, Eickholz P, Petsos H. In vitro efficacy of three different implant surface decontamination methods in three different defect configurations. Clin Oral Implants Res. 2019;30(6):550–558. doi:10.1111/clr.13441.
  • Sahrmann P, Ronay V, Hofer D, Attin T, Jung RE, Schmidlin PR. In vitro cleaning potential of three different implant debridement methods. Clin Oral Implants Res. 2015;26(3):314–319. doi:10.1111/clr.12322.
  • Luengo F, Sanz-Esporrín J, Noguerol F, Sanz-Martín I, Sanz-Sánchez I, Sanz M. In vitro effect of different implant decontamination methods in three intraosseous defect configurations. Clin Oral Implants Res. 2022;33(11):1087–1097. doi:10.1111/clr.13991.
  • Sanz-Martín I, Paeng K, Park H, Cha JK, Jung UW, Sanz M. Significance of implant design on the efficacy of different peri-implantitis decontamination protocols. Clin Oral Investig. 2021;25(6):3589–3597. doi:10.1007/s00784-020-03681-y.
  • Park JB, Jang YJ, Koh M, Choi BK, Kim KK, Ko Y. In vitro analysis of the efficacy of ultrasonic scalers and a toothbrush for removing bacteria from resorbable blast material titanium disks. J Periodontol. 2013;84(8):1191–1198. doi:10.1902/jop.2012.120369.
  • Park JB, Lee SH, Kim N, Park S, Jin SH, Choi BK, et al. Instrumentation With Ultrasonic Scalers Facilitates Cleaning of the Sandblasted and Acid-Etched Titanium Implants. J Oral Implantol. 2015;41(4):419–428. doi:10.1563/aaid-joi-d-13-00078.
  • Schwarz F, Sculean A, Rothamel D, Schwenzer K, Georg T, Becker J. Clinical evaluation of an Er:YAG laser for nonsurgical treatment of peri-implantitis: a pilot study. Clin Oral Implants Res. 2005;16(1):44–52. doi:10.1111/j.1600-0501.2004.01051.x.
  • Toma S, Behets C, Brecx MC, Lasserre JF. In Vitro Comparison of the Efficacy of Peri-Implantitis Treatments on the Removal and Recolonization of Streptococcus gordonii Biofilm on Titanium Disks. Materials (Basel). 2018;11(12). doi:10.3390/ma11122484.
  • Toma S, Brecx MC, Lasserre JF. Clinical Evaluation of Three Surgical Modalities in the Treatment of Peri-Implantitis: A Randomized Controlled Clinical Trial. J Clin Med. 2019;8(7). doi:10.3390/jcm8070966.
  • Toma S, Lasserre J, Brecx MC, Nyssen-Behets C. In vitro evaluation of peri-implantitis treatment modalities on Saos-2osteoblasts. Clin Oral Implants Res. 2016;27(9):1085–1092. doi:10.1111/clr.12686.
  • Al-Hashedi AA, Laurenti M, Benhamou V, Tamimi F. Decontamination of titanium implants using physical methods. Clin Oral Implants Res. 2017;28(8):1013–1021. doi:10.1111/clr.12914.
  • Pérez-Tanoira R, Fernández-Arias M, Potel C, Carballo-Fernández R, Pérez-Castro S, Boutinguiza M, et al. Silver Nanoparticles Produced by Laser Ablation and Re -Irradiation Are Effective Preventing Peri-Implantitis Multispecies Biofilm Formation. Int J Mol Sci. 2022;23(19). doi:10.3390/ijms231912027.
  • Giannelli M, Landini G, Materassi F, Chellini F, Antonelli A, Tani A, et al. Effects of photodynamic laser and violet-blue LED irradiation on Staphylococcus aureus biofilm and Escherichia coli lipopolysaccharide attached to moderately rough titanium surface: in vitro study. Lasers Med Sci. 2017;32(4):857–864. doi:10.1007/s10103-017-2185-y.
  • Hiltunen AK, Savijoki K, Nyman TA, Miettinen I, Ihalainen P, Peltonen J, et al. Structural and functional dynamics of Staphylococcus aureus biofilms and biofilm matrix proteins on different clinical materials. Microorganisms. 2019;7(12). doi:10.3390/microorganisms7120584.
  • Cha JK, Paeng K, Jung UW, Choi SH, Sanz M, Sanz-Martín I. The effect of five mechanical instrumentation protocols on implant surface topography and roughness: A scanning electron microscope and confocal laser scanning microscope analysis. Clin Oral Implants Res. 2019;30(6):578–587. doi:10.1111/clr.13446.
  • Kurt A, Cilingir A, Bilmenoglu C, Topcuoglu N, Kulekci G. Effect of different polishing techniques for composite resin materials on surface properties and bacterial biofilm formation. J Dent. 2019;90:103–199. doi:10.1016/j.jdent.2019.103199.
  • Reigada I, Pérez-Tanoira R, Patel JZ, Savijoki K, Yli-Kauhaluoma J, Kinnari TJ, et al. Strategies to prevent biofilm infections on biomaterials: Effect of novel naturally-derived biofilm inhibitors on a competitive colonization model of titanium by Staphylococcus aureus and SaOS-2 cells. Microorganisms. 2020;8(3). doi:10.3390/microorganisms8030345.
  • Romanos GE, Weitz D. Therapy of peri-implant diseases. Where is the evidence? J Evid Based Dent Pract. 2012;12(3 Suppl):204–208. doi:10.1016/s1532-3382(12)70038-6.
  • Louropoulou A, Slot DE, Van der Weijden F. The effects of mechanical instruments on contaminated titanium dental implant surfaces: A systematic review. Clin Oral Implants Res. 2014;25(10):1149–1160. doi:10.1111/clr.12224.
  • Schmage P, Thielemann J, Nergiz I, Scorziello TM, Pfeiffer P. Effects of 10 cleaning instruments on four different implant surfaces. Int J Oral Maxillofac Implants. 2012;27(2):308–317.
  • Renvert S, Samuelsson E, Lindahl C, Persson GR. Mechanical non-surgical treatment of peri-implantitis: A double-blind randomized longitudinal clinical study. I: Clinical results. J Clin Periodontol. 2009;36(7):604–609. doi:10.1111/j.1600-051X.2009.01421.x.
  • Karring ES, Stavropoulos A, Ellegaard B, Karring T. Treatment of peri-implantitis by the Vector system. Clin Oral Implants Res. 2005;16(3):288–293. doi:10.1111/j.1600-0501.2005.01141.x.
  • Schmidt KE, Auschill TM, Heumann C, Frankenberger R, Eick S, Sculean A, et al. Influence of different instrumentation modalities on the surface characteristics and biofilm formation on dental implant neck, in vitro. Clin Oral Implants Res. 2017;28(4):483–490. doi:10.1111/clr.12823.
  • Baek SH, Shon WJ, Bae KS, Kum KY, Lee WC, Park YS. Evaluation of the safety and efficiency of novel metallic ultrasonic scaler tip on titanium surfaces. Clin Oral Implants Res. 2012;23(11):1269–1274. doi:10.1111/j.1600-0501.2011.02302.x.
  • Mann M, Parmar D, Walmsley AD, Lea SC. Effect of plastic-covered ultrasonic scalers on titanium implant surfaces. Clin Oral Implants Res. 2012;23(1):76–82. doi:10.1111/j.1600-0501.2011.02186.x.
  • Rühling A, Kocher T, Kreusch J, Plagmann HC. Treatment of subgingival implant surfaces with Teflon-coated sonic and ultrasonic scaler tips and various implant curettes: An in vitro study. Clin Oral Implants Res. 1994;5(1):19–29. doi:10.1034/j.1600-0501.1994.050103.x.
  • Hakki SS, Tatar G, Dundar N, Demiralp B. The effect of different cleaning methods on the surface and temperature of failed titanium implants: An in vitro study. Lasers Med Sci. 2017;32(3):563–571. doi:10.1007/s10103-017-2149-2.
  • Yang SM, Park JB, Ko Y. Use of confocal microscopy for quantification of plastic remnants on rough titanium after instrumentation and evaluation of efficacy of removal. Int J Oral Maxillofac Implants. 2015;30(3):519–525. doi:10.11607/jomi.3500.
  • Teughels W, Van Assche N, Sliepen I, Quirynen M. Effect of material characteristics and/or surface topography on biofilm development. Clin Oral Implants Res. 2006;17 Suppl 2:68–81. doi:10.1111/j.1600-0501.2006.01353.x.
Year 2024, Volume: 51 Issue: 3, 89 - 95, 31.12.2024
https://doi.org/10.52037/eads.2024.0015

Abstract

Project Number

This study was funded by the Trakya University Scientific Research Projects, (Project Number: 2021/89).

References

  • Alcoforado GA, Rams TE, Feik D, Slots J. Microbial aspects of failing osseointegrated dental implants in humans. J Parodontol. 1991;10(1):11–18.
  • Berglundh T, Jepsen S, Stadlinger B, Terheyden H. Peri-implantitis and its prevention. Clin Oral Implants Res. 2019;30(2):150–155. doi:10.1111/clr.13401.
  • Fürst MM, Salvi GE, Lang NP, Persson GR. Bacterial colonization immediately after installation on oral titanium implants. Clin Oral Implants Res. 2007;18(4):501–508. doi:10.1111/j.1600-0501.2007.01381.x.
  • Mombelli A, Lang NP. Microbial aspects of implant dentistry. Periodontol 2000. 1994;4:74–80. doi:10.1111/j.1600-0757.1994.tb00007.x.
  • Persson GR, Renvert S. Cluster of bacteria associated with peri-implantitis. Clin Implant Dent Relat Res. 2014;16(6):783–793. doi:10.1111/cid.12052.
  • Albertini M, López-Cerero L, O’Sullivan MG, Chereguini CF, Ballesta S, Ríos V, et al. Assessment of periodontal and opportunistic flora in patients with peri-implantitis. Clin Oral Implants Res. 2015;26(8):937–941. doi:10.1111/clr.12387.
  • Salvi GE, Furst MM, Lang NP, Persson GR. One-year bacterial colonization patterns of Staphylococcus aureus and other bacteria at implants and adjacent teeth. Clin Oral Implants Res. 2008;19(3):242–248. doi:10.1111/j.1600-0501.2007.01470.x.
  • Cosgarea R, Roccuzzo A, Jepsen K, Sculean A, Jepsen S, Salvi GE. Efficacy of mechanical/physical approaches for implant surface decontamination in non-surgical submarginal instrumentation of peri-implantitis. A systematic review. J Clin Periodontol. 2023;50 Suppl 26:188–211. doi:10.1111/jcpe.13762.
  • Meyle J. Mechanical, chemical and laser treatments of the implant surface in the presence of marginal bone loss around implants. Eur J Oral Implantol. 2012;5 Suppl:71–81.
  • Kawashima H, Sato S, Kishida M, Ito K. A comparison of root surface instrumentation using two piezoelectric ultrasonic scalers and a hand scaler in vivo. J Periodontal Res. 2007;42(1):90–95. doi:10.1111/j.1600-0765.2006.00924.x.
  • Sahrmann P, Winkler S, Gubler A, Attin T. Assessment of implant surface and instrument insert changes due to instrumentation with different tips for ultrasonic-driven debridement. BMC Oral Health. 2021;21(1):25. doi:10.1186/s12903-020-01384-0.
  • Keim D, Nickles K, Dannewitz B, Ratka C, Eickholz P, Petsos H. In vitro efficacy of three different implant surface decontamination methods in three different defect configurations. Clin Oral Implants Res. 2019;30(6):550–558. doi:10.1111/clr.13441.
  • Sahrmann P, Ronay V, Hofer D, Attin T, Jung RE, Schmidlin PR. In vitro cleaning potential of three different implant debridement methods. Clin Oral Implants Res. 2015;26(3):314–319. doi:10.1111/clr.12322.
  • Luengo F, Sanz-Esporrín J, Noguerol F, Sanz-Martín I, Sanz-Sánchez I, Sanz M. In vitro effect of different implant decontamination methods in three intraosseous defect configurations. Clin Oral Implants Res. 2022;33(11):1087–1097. doi:10.1111/clr.13991.
  • Sanz-Martín I, Paeng K, Park H, Cha JK, Jung UW, Sanz M. Significance of implant design on the efficacy of different peri-implantitis decontamination protocols. Clin Oral Investig. 2021;25(6):3589–3597. doi:10.1007/s00784-020-03681-y.
  • Park JB, Jang YJ, Koh M, Choi BK, Kim KK, Ko Y. In vitro analysis of the efficacy of ultrasonic scalers and a toothbrush for removing bacteria from resorbable blast material titanium disks. J Periodontol. 2013;84(8):1191–1198. doi:10.1902/jop.2012.120369.
  • Park JB, Lee SH, Kim N, Park S, Jin SH, Choi BK, et al. Instrumentation With Ultrasonic Scalers Facilitates Cleaning of the Sandblasted and Acid-Etched Titanium Implants. J Oral Implantol. 2015;41(4):419–428. doi:10.1563/aaid-joi-d-13-00078.
  • Schwarz F, Sculean A, Rothamel D, Schwenzer K, Georg T, Becker J. Clinical evaluation of an Er:YAG laser for nonsurgical treatment of peri-implantitis: a pilot study. Clin Oral Implants Res. 2005;16(1):44–52. doi:10.1111/j.1600-0501.2004.01051.x.
  • Toma S, Behets C, Brecx MC, Lasserre JF. In Vitro Comparison of the Efficacy of Peri-Implantitis Treatments on the Removal and Recolonization of Streptococcus gordonii Biofilm on Titanium Disks. Materials (Basel). 2018;11(12). doi:10.3390/ma11122484.
  • Toma S, Brecx MC, Lasserre JF. Clinical Evaluation of Three Surgical Modalities in the Treatment of Peri-Implantitis: A Randomized Controlled Clinical Trial. J Clin Med. 2019;8(7). doi:10.3390/jcm8070966.
  • Toma S, Lasserre J, Brecx MC, Nyssen-Behets C. In vitro evaluation of peri-implantitis treatment modalities on Saos-2osteoblasts. Clin Oral Implants Res. 2016;27(9):1085–1092. doi:10.1111/clr.12686.
  • Al-Hashedi AA, Laurenti M, Benhamou V, Tamimi F. Decontamination of titanium implants using physical methods. Clin Oral Implants Res. 2017;28(8):1013–1021. doi:10.1111/clr.12914.
  • Pérez-Tanoira R, Fernández-Arias M, Potel C, Carballo-Fernández R, Pérez-Castro S, Boutinguiza M, et al. Silver Nanoparticles Produced by Laser Ablation and Re -Irradiation Are Effective Preventing Peri-Implantitis Multispecies Biofilm Formation. Int J Mol Sci. 2022;23(19). doi:10.3390/ijms231912027.
  • Giannelli M, Landini G, Materassi F, Chellini F, Antonelli A, Tani A, et al. Effects of photodynamic laser and violet-blue LED irradiation on Staphylococcus aureus biofilm and Escherichia coli lipopolysaccharide attached to moderately rough titanium surface: in vitro study. Lasers Med Sci. 2017;32(4):857–864. doi:10.1007/s10103-017-2185-y.
  • Hiltunen AK, Savijoki K, Nyman TA, Miettinen I, Ihalainen P, Peltonen J, et al. Structural and functional dynamics of Staphylococcus aureus biofilms and biofilm matrix proteins on different clinical materials. Microorganisms. 2019;7(12). doi:10.3390/microorganisms7120584.
  • Cha JK, Paeng K, Jung UW, Choi SH, Sanz M, Sanz-Martín I. The effect of five mechanical instrumentation protocols on implant surface topography and roughness: A scanning electron microscope and confocal laser scanning microscope analysis. Clin Oral Implants Res. 2019;30(6):578–587. doi:10.1111/clr.13446.
  • Kurt A, Cilingir A, Bilmenoglu C, Topcuoglu N, Kulekci G. Effect of different polishing techniques for composite resin materials on surface properties and bacterial biofilm formation. J Dent. 2019;90:103–199. doi:10.1016/j.jdent.2019.103199.
  • Reigada I, Pérez-Tanoira R, Patel JZ, Savijoki K, Yli-Kauhaluoma J, Kinnari TJ, et al. Strategies to prevent biofilm infections on biomaterials: Effect of novel naturally-derived biofilm inhibitors on a competitive colonization model of titanium by Staphylococcus aureus and SaOS-2 cells. Microorganisms. 2020;8(3). doi:10.3390/microorganisms8030345.
  • Romanos GE, Weitz D. Therapy of peri-implant diseases. Where is the evidence? J Evid Based Dent Pract. 2012;12(3 Suppl):204–208. doi:10.1016/s1532-3382(12)70038-6.
  • Louropoulou A, Slot DE, Van der Weijden F. The effects of mechanical instruments on contaminated titanium dental implant surfaces: A systematic review. Clin Oral Implants Res. 2014;25(10):1149–1160. doi:10.1111/clr.12224.
  • Schmage P, Thielemann J, Nergiz I, Scorziello TM, Pfeiffer P. Effects of 10 cleaning instruments on four different implant surfaces. Int J Oral Maxillofac Implants. 2012;27(2):308–317.
  • Renvert S, Samuelsson E, Lindahl C, Persson GR. Mechanical non-surgical treatment of peri-implantitis: A double-blind randomized longitudinal clinical study. I: Clinical results. J Clin Periodontol. 2009;36(7):604–609. doi:10.1111/j.1600-051X.2009.01421.x.
  • Karring ES, Stavropoulos A, Ellegaard B, Karring T. Treatment of peri-implantitis by the Vector system. Clin Oral Implants Res. 2005;16(3):288–293. doi:10.1111/j.1600-0501.2005.01141.x.
  • Schmidt KE, Auschill TM, Heumann C, Frankenberger R, Eick S, Sculean A, et al. Influence of different instrumentation modalities on the surface characteristics and biofilm formation on dental implant neck, in vitro. Clin Oral Implants Res. 2017;28(4):483–490. doi:10.1111/clr.12823.
  • Baek SH, Shon WJ, Bae KS, Kum KY, Lee WC, Park YS. Evaluation of the safety and efficiency of novel metallic ultrasonic scaler tip on titanium surfaces. Clin Oral Implants Res. 2012;23(11):1269–1274. doi:10.1111/j.1600-0501.2011.02302.x.
  • Mann M, Parmar D, Walmsley AD, Lea SC. Effect of plastic-covered ultrasonic scalers on titanium implant surfaces. Clin Oral Implants Res. 2012;23(1):76–82. doi:10.1111/j.1600-0501.2011.02186.x.
  • Rühling A, Kocher T, Kreusch J, Plagmann HC. Treatment of subgingival implant surfaces with Teflon-coated sonic and ultrasonic scaler tips and various implant curettes: An in vitro study. Clin Oral Implants Res. 1994;5(1):19–29. doi:10.1034/j.1600-0501.1994.050103.x.
  • Hakki SS, Tatar G, Dundar N, Demiralp B. The effect of different cleaning methods on the surface and temperature of failed titanium implants: An in vitro study. Lasers Med Sci. 2017;32(3):563–571. doi:10.1007/s10103-017-2149-2.
  • Yang SM, Park JB, Ko Y. Use of confocal microscopy for quantification of plastic remnants on rough titanium after instrumentation and evaluation of efficacy of removal. Int J Oral Maxillofac Implants. 2015;30(3):519–525. doi:10.11607/jomi.3500.
  • Teughels W, Van Assche N, Sliepen I, Quirynen M. Effect of material characteristics and/or surface topography on biofilm development. Clin Oral Implants Res. 2006;17 Suppl 2:68–81. doi:10.1111/j.1600-0501.2006.01353.x.
There are 40 citations in total.

Details

Primary Language English
Subjects Dental Materials and Equipment, Oral Implantology, Periodontics
Journal Section Original Research Articles
Authors

Ece Açıkgöz Alparslan 0000-0003-4560-6156

Ufuk Bağcı 0000-0002-1511-2465

Ayşegül Kurt 0000-0003-2775-3179

Project Number This study was funded by the Trakya University Scientific Research Projects, (Project Number: 2021/89).
Early Pub Date December 24, 2024
Publication Date December 31, 2024
Submission Date February 27, 2024
Acceptance Date August 31, 2024
Published in Issue Year 2024 Volume: 51 Issue: 3

Cite

Vancouver Açıkgöz Alparslan E, Bağcı U, Kurt A. Comparison of the Effects of Different Decontamination Methods on Staphylococcus Aureus Biofilm. EADS. 2024;51(3):89-95.