Review
BibTex RIS Cite

ARTIFICIAL INTELLIGENCE IN CLINICAL APPLICATIONS FOR INFECTIOUS DISEASES: DIAGNOSIS, TREATMENT AND IMMUNIZATION

Year 2024, Volume: 5 Issue: 2, 95 - 106
https://doi.org/10.46871/eams.1497329

Abstract

Despite scientific and technological advances in recent years, infectious diseases continue to pose a significant threat to public health. These diseases can cause serious health problems as they have the potential to spread rapidly. In addition, they occur in the form of epidemics and affect populations. The difficulty of rapid and accurate diagnosis and increasing antimicrobial resistance create difficulties in the treatment of infectious diseases. Artificial intelligence technology has developed useful applications in many areas such as the development of diagnosis and treatment methods, anti-infective drug and vaccine discovery, and prevention of increasing anti-infective drug resistance. In particular, AI-assisted clinical decision support systems can help predict disease outbreaks, support diagnosis of diseases, optimise treatment options and monitor epidemiological trends by analysing large datasets. It can also provide more accurate and faster results in analysing diagnostic images and identifying diseases. Advances in this field need to be supported by multidisciplinary studies and a strong ethical framework. In this review, we outline approaches to the application and use of artificial intelligence in infectious diseases, highlight the progress supported by artificial intelligence, and discuss how it can be used. We outline the applications and benefits of AI in infectious diseases. In this way, more effective intervention strategies can be developed to control infectious diseases and protect public health.

Supporting Institution

Finansal Destek: Bu çalışma herhangi bir fon tarafından desteklenmemiştir

References

  • 1. Turıng AM. I.—Computıng Machınery And IntellıgencE. Mind. 1950 Oct 1;LIX(236):433–60.
  • 2. Iqbal JD, Vinay R. Are we ready for Artificial Intelligence in Medicine? Swiss Medical Weekly. 2022;152:w30179.
  • 3. Shortliffe E. Computer-based medical consultations: MYCIN. Artificial Intelligence - AI. 1976;388.
  • 4. Weis CV, Jutzeler CR, Borgwardt K. Machine learning for microbial identification and antimicrobial susceptibility testing on MALDI-TOF mass spectra: a systematic review. Clinical Microbiolology Infection. 2020;26(10):1310–7.
  • 5. Liu P ran, Lu L, Zhang J yao, et al. Application of Artificial Intelligence in Medicine: An Overview. Current Medical Science. 2021;41(6):1105–15.
  • 6. Crossnohere NL, Elsaid M, Paskett J, et al. Guidelines for Artificial Intelligence in Medicine: Literature Review and Content Analysis of Frameworks. Journal Medical Internet Research. 2022;24(8):e36823.
  • 7. Peiffer-Smadja N, Rawson TM, Ahmad R, et al. Machine learning for clinical decision support in infectious diseases: a narrative review of current applications. Clinical Microbiology and Infection. 2020;26(5):584–95.
  • 8. Beam AL, Kohane IS. Big Data and Machine Learning in Health Care. JAMA. 2018;319(13):1317–8.
  • 9. Sim I, Gorman P, Greenes RA, et al. Clinical decision support systems for the practice of evidence-based medicine. Journal of the American Medical Informatics Association. 2001;8(6):527–34.
  • 10. Rawson TM, Moore LSP, Hernandez B, et al. A systematic review of clinical decision support systems for antimicrobial management: are we failing to investigate these interventions appropriately? Clinical Microbiology and Infection. 2017;23(8):524–32.
  • 11. Rawson TM, Ahmad R, Toumazou C, et al. Artificial intelligence can improve decision-making in infection management. Nature Human Behaviour. 2019;3(6):543–5.
  • 12. Goodman RA, Buehler JW, Koplan JP. The epidemiologic field investigation: science and judgment in public health practice. American Journal of Epidemiology.1990;132(1):9–16.
  • 13. Halford GS, Baker R, McCredden JE, et al. How many variables can humans process? Psychological Science. 2005;16(1):70–6.
  • 14. Fitzpatrick F, Doherty A, Lacey G. Using Artificial Intelligence in Infection Prevention. Current Treatment Options in Infectious Diseases. 2020;12(2):135–44.
  • 15. Alballa N, Al-Turaiki I. Machine learning approaches in COVID-19 diagnosis, mortality, and severity risk prediction: A review. Informatics in Medicine Unlocked. 2021;24:100564.
  • 16. Wynants L, Van Calster B, Collins GS, et al. Prediction models for diagnosis and prognosis of covid-19: systematic review and critical appraisal. British Medical Journal. 2020;369:m1328.
  • 17. Keshavarzi Arshadi A, Webb J, Salem M, et al. Artificial Intelligence for COVID-19 Drug Discovery and Vaccine Development. Frontiers Artificial Intelligence. 2020;3:65.
  • 18. Sağlık Bilgi Sistemleri Genel Müdürlüğü [Internet]. [cited 2024 Mar 24]. Available from: https://sbsgm.saglik.gov.tr/TR-73584/fitas.html
  • 19. Kar P, Karna R. A Review of the Diagnosis and Management of Hepatitis E. Current Treatment Options in Infectious Diseases. 2020;12(3):310–20.
  • 20. Konerman MA, Zhang Y, Zhu J, et al. Improvement of predictive models of risk of disease progression in chronic hepatitis C by incorporating longitudinal data. Hepatology. 2015;61(6):1832–41.
  • 21. Wübbolding M, Lopez Alfonso JC, Lin CY, et al. Pilot Study Using Machine Learning to Identify Immune Profiles for the Prediction of Early Virological Relapse After Stopping Nucleos(t)ide Analogues in HBeAg-Negative CHB. Hepatology Communications. 2021;5(1):97–111.
  • 22. Stokes K, Castaldo R, Federici C, et al. The use of artificial intelligence systems in diagnosis of pneumonia via signs and symptoms: A systematic review. Biomedical Signal Processing and Control. 2022;72:103325.
  • 23. Harris M, Qi A, Jeagal L, et al. A systematic review of the diagnostic accuracy of artificial intelligence-based computer programs to analyze chest x-rays for pulmonary tuberculosis. PLoS One. 2019;14(9):e0221339.
  • 24. Meraj, S. S, Yaakob, R, Azman, A, et al. Artificial intelligence in diagnosing tuberculosis: a review. International Journal on Advanced Science, Engineering and Information Technology, 2019;9(1), 81-91.
  • 25. Borkenhagen LK, Allen MW, Runstadler JA. Influenza virus genotype to phenotype predictions through machine learning: a systematic review. Emerging Microbes Infections. 2021;10(1):1896–907.
  • 26. Abràmoff MD, Lavin PT, Birch M, et al. Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices. NPJ Digital Medicine. 2018;1:39.
  • 27. Cengi̇l E, Çinar A. A New Approach For Image Classıfıcatıon: Convolutıonal Neural Network. European Journal of Technique. 2016;6(2):96–103.
  • 28. Dosovitskiy A, Beyer L, Kolesnikov A, et al. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale [Internet]. arXiv; 2021 [cited 2024 Mar 26]. Available from: http://arxiv.org/abs/2010.11929
  • 29. Chu WT, Reza SMS, Anibal JT, et al. Artificial Intelligence and Infectious Disease Imaging. The Journal Infectious Diseases. 2023;228(Suppl 4):S322–36.
  • 30. Antimicrobial resistance [Internet]. [cited 2024 Mar 29]. Available from: https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance
  • 31. Kavvas ES, Catoiu E, Mih N, et al. Machine learning and structural analysis of Mycobacterium tuberculosis pan-genome identifies genetic signatures of antibiotic resistance. Nature Communications. 2018;9(1):4306.
  • 32. Khaledi A, Weimann A, Schniederjans M, et al. Predicting antimicrobial resistance in Pseudomonas aeruginosa with machine learning-enabled molecular diagnostics. EMBO Molecular Medicine. 2020;12(3):e10264.
  • 33. Weis C, Cuénod A, Rieck B, et al. Direct antimicrobial resistance prediction from clinical MALDI-TOF mass spectra using machine learning. Nature Medicine. 2022;28(1):164–74.
  • 34. Wattam AR, Abraham D, Dalay O, et al. PATRIC, the bacterial bioinformatics database and analysis resource. Nucleic Acids Res. 2014;42(Database issue):D581-591.
  • 35. Korkak FA, Keskin Alkaç Z, Tanyıldızı S, et al. Doğal Kaynaklardan Yeni Antimikrobiyal Madde Tarama Yöntemleri. Firat Universitesi Saglik Bilimleri Veteriner Dergisi. 2022;36(3).
  • 36. Awad A, Fina F, Goyanes A, et al. 3D printing: Principles and pharmaceutical applications of selective laser sintering. International Journal of Pharmaceutics. 2020;586:119594.
  • 37. Mohanty S, Harun AI Rashid M, Mridul M, et al.Application of Artificial Intelligence in COVID-19 drug repurposing. Diabetes & Metabolic Syndrome:Clinical Research & Reviews. 2020;14(5):1027–31.
  • 38. Beck BR, Shin B, Choi Y, et al. Predicting commercially available antiviral drugs that may act on the novel coronavirus (SARS-CoV-2) through a drug-target interaction deep learning model. Computational and Structural Biotechnology Journal. 2020;18:784–90.
  • 39. Stokes JM, Yang K, Swanson K, et al. A Deep Learning Approach to Antibiotic Discovery. Cell. 2020;180(4):688-702.e13.
  • 40. Muraro C, Polato M, Bortoli M, et al. Radical scavenging activity of natural antioxidants and drugs: Development of a combined machine learning and quantum chemistry protocol. The Journal of Chemical Physics. 2020;153(11):114117.
  • 41. Wong F, de la Fuente-Nunez C, Collins JJ. Leveraging artificial intelligence in the fight against infectious diseases. Science. 2023;381(6654):164–70.
  • 42. Russo G, Reche P, Pennisi M, et al. The combination of artificial intelligence and systems biology for intelligent vaccine design. Expert Opinion onDrug Discovery. 2020;15(11):1267–81.
  • 43. Giacobbe DR, Zhang Y, de la Fuente J. Explainable artificial intelligence and machine learning: novel approaches to face infectious diseases challenges. Annals of Medicine. 2023;55(2):2286336.

BULAŞICI HASTALIKLARA YÖNELİK KLİNİK UYGULAMALARDA YAPAY ZEKA: TEŞHİS, TEDAVİ VE BAĞIŞIKLAMA

Year 2024, Volume: 5 Issue: 2, 95 - 106
https://doi.org/10.46871/eams.1497329

Abstract

Son yıllardaki bilimsel ve teknolojik gelişmeler rağmen, bulaşıcı hastalıklar halk sağlığı için önemli bir tehdit oluşturmaya devam etmektedir. Bu hastalıklar, hızla yayılabilme potansiyeline sahip oldukları için ciddi sağlık sorunlarına yol açabilirler. Ayrıca, salgınlar şeklinde ortaya çıkarak toplumları etkiler. Hızlı ve doğru tanı koyma zorluğu ve giderek artan antimikrobiyal direnç, enfeksiyon hastalıklarının tedavisinde zorluklar yaratmaktadır. Yapay zeka teknolojisi, teşhis ve tedavi yöntemlerinin geliştirilmesi, anti-enfektif ilaç ve aşı keşfi, artan anti-enfektif ilaçlar direncinin önlenmesi gibi birçok alanda faydalı uygulamalar geliştirmiştir. Özellikle, yapay zeka destekli klinik karar destek sistemleri, büyük veri kümelerini analiz ederek hastalık salgınlarını tahmin etme, hastalıkların teşhisini destekleme, tedavi seçeneklerini optimize etme ve epidemiyolojik trendleri izleme konularında yardımcı olabilir. Ayrıca, tanısal görüntülerin analizinde ve hastalıkların belirlenmesinde daha doğru ve hızlı sonuçlar elde edilmesini sağlayabilir. Bu alandaki ilerlemelerin, multidisipliner çalışmalar ve güçlü bir etik çerçeve ile desteklenmesi gerekmektedir. Bu derlemede, bulaşıcı hastalıklarda yapay zeka uygulamaları ve kullanımına yönelik yaklaşımları belirtiyor, yapay zeka ile desteklenen ilerlemeyi gözler önüne sermeyi ve nasıl kullanılabileceğini tartışıyoruz. Bulaşıcı hastalıklarda yapay zekanın uygulamaları ve yararlarını belirtiyoruz. Bu sayede, daha etkili müdahale stratejileri geliştirilerek bulaşıcı hastalıkların kontrol altına alınması ve halk sağlığının korunması sağlanabilir.

References

  • 1. Turıng AM. I.—Computıng Machınery And IntellıgencE. Mind. 1950 Oct 1;LIX(236):433–60.
  • 2. Iqbal JD, Vinay R. Are we ready for Artificial Intelligence in Medicine? Swiss Medical Weekly. 2022;152:w30179.
  • 3. Shortliffe E. Computer-based medical consultations: MYCIN. Artificial Intelligence - AI. 1976;388.
  • 4. Weis CV, Jutzeler CR, Borgwardt K. Machine learning for microbial identification and antimicrobial susceptibility testing on MALDI-TOF mass spectra: a systematic review. Clinical Microbiolology Infection. 2020;26(10):1310–7.
  • 5. Liu P ran, Lu L, Zhang J yao, et al. Application of Artificial Intelligence in Medicine: An Overview. Current Medical Science. 2021;41(6):1105–15.
  • 6. Crossnohere NL, Elsaid M, Paskett J, et al. Guidelines for Artificial Intelligence in Medicine: Literature Review and Content Analysis of Frameworks. Journal Medical Internet Research. 2022;24(8):e36823.
  • 7. Peiffer-Smadja N, Rawson TM, Ahmad R, et al. Machine learning for clinical decision support in infectious diseases: a narrative review of current applications. Clinical Microbiology and Infection. 2020;26(5):584–95.
  • 8. Beam AL, Kohane IS. Big Data and Machine Learning in Health Care. JAMA. 2018;319(13):1317–8.
  • 9. Sim I, Gorman P, Greenes RA, et al. Clinical decision support systems for the practice of evidence-based medicine. Journal of the American Medical Informatics Association. 2001;8(6):527–34.
  • 10. Rawson TM, Moore LSP, Hernandez B, et al. A systematic review of clinical decision support systems for antimicrobial management: are we failing to investigate these interventions appropriately? Clinical Microbiology and Infection. 2017;23(8):524–32.
  • 11. Rawson TM, Ahmad R, Toumazou C, et al. Artificial intelligence can improve decision-making in infection management. Nature Human Behaviour. 2019;3(6):543–5.
  • 12. Goodman RA, Buehler JW, Koplan JP. The epidemiologic field investigation: science and judgment in public health practice. American Journal of Epidemiology.1990;132(1):9–16.
  • 13. Halford GS, Baker R, McCredden JE, et al. How many variables can humans process? Psychological Science. 2005;16(1):70–6.
  • 14. Fitzpatrick F, Doherty A, Lacey G. Using Artificial Intelligence in Infection Prevention. Current Treatment Options in Infectious Diseases. 2020;12(2):135–44.
  • 15. Alballa N, Al-Turaiki I. Machine learning approaches in COVID-19 diagnosis, mortality, and severity risk prediction: A review. Informatics in Medicine Unlocked. 2021;24:100564.
  • 16. Wynants L, Van Calster B, Collins GS, et al. Prediction models for diagnosis and prognosis of covid-19: systematic review and critical appraisal. British Medical Journal. 2020;369:m1328.
  • 17. Keshavarzi Arshadi A, Webb J, Salem M, et al. Artificial Intelligence for COVID-19 Drug Discovery and Vaccine Development. Frontiers Artificial Intelligence. 2020;3:65.
  • 18. Sağlık Bilgi Sistemleri Genel Müdürlüğü [Internet]. [cited 2024 Mar 24]. Available from: https://sbsgm.saglik.gov.tr/TR-73584/fitas.html
  • 19. Kar P, Karna R. A Review of the Diagnosis and Management of Hepatitis E. Current Treatment Options in Infectious Diseases. 2020;12(3):310–20.
  • 20. Konerman MA, Zhang Y, Zhu J, et al. Improvement of predictive models of risk of disease progression in chronic hepatitis C by incorporating longitudinal data. Hepatology. 2015;61(6):1832–41.
  • 21. Wübbolding M, Lopez Alfonso JC, Lin CY, et al. Pilot Study Using Machine Learning to Identify Immune Profiles for the Prediction of Early Virological Relapse After Stopping Nucleos(t)ide Analogues in HBeAg-Negative CHB. Hepatology Communications. 2021;5(1):97–111.
  • 22. Stokes K, Castaldo R, Federici C, et al. The use of artificial intelligence systems in diagnosis of pneumonia via signs and symptoms: A systematic review. Biomedical Signal Processing and Control. 2022;72:103325.
  • 23. Harris M, Qi A, Jeagal L, et al. A systematic review of the diagnostic accuracy of artificial intelligence-based computer programs to analyze chest x-rays for pulmonary tuberculosis. PLoS One. 2019;14(9):e0221339.
  • 24. Meraj, S. S, Yaakob, R, Azman, A, et al. Artificial intelligence in diagnosing tuberculosis: a review. International Journal on Advanced Science, Engineering and Information Technology, 2019;9(1), 81-91.
  • 25. Borkenhagen LK, Allen MW, Runstadler JA. Influenza virus genotype to phenotype predictions through machine learning: a systematic review. Emerging Microbes Infections. 2021;10(1):1896–907.
  • 26. Abràmoff MD, Lavin PT, Birch M, et al. Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices. NPJ Digital Medicine. 2018;1:39.
  • 27. Cengi̇l E, Çinar A. A New Approach For Image Classıfıcatıon: Convolutıonal Neural Network. European Journal of Technique. 2016;6(2):96–103.
  • 28. Dosovitskiy A, Beyer L, Kolesnikov A, et al. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale [Internet]. arXiv; 2021 [cited 2024 Mar 26]. Available from: http://arxiv.org/abs/2010.11929
  • 29. Chu WT, Reza SMS, Anibal JT, et al. Artificial Intelligence and Infectious Disease Imaging. The Journal Infectious Diseases. 2023;228(Suppl 4):S322–36.
  • 30. Antimicrobial resistance [Internet]. [cited 2024 Mar 29]. Available from: https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance
  • 31. Kavvas ES, Catoiu E, Mih N, et al. Machine learning and structural analysis of Mycobacterium tuberculosis pan-genome identifies genetic signatures of antibiotic resistance. Nature Communications. 2018;9(1):4306.
  • 32. Khaledi A, Weimann A, Schniederjans M, et al. Predicting antimicrobial resistance in Pseudomonas aeruginosa with machine learning-enabled molecular diagnostics. EMBO Molecular Medicine. 2020;12(3):e10264.
  • 33. Weis C, Cuénod A, Rieck B, et al. Direct antimicrobial resistance prediction from clinical MALDI-TOF mass spectra using machine learning. Nature Medicine. 2022;28(1):164–74.
  • 34. Wattam AR, Abraham D, Dalay O, et al. PATRIC, the bacterial bioinformatics database and analysis resource. Nucleic Acids Res. 2014;42(Database issue):D581-591.
  • 35. Korkak FA, Keskin Alkaç Z, Tanyıldızı S, et al. Doğal Kaynaklardan Yeni Antimikrobiyal Madde Tarama Yöntemleri. Firat Universitesi Saglik Bilimleri Veteriner Dergisi. 2022;36(3).
  • 36. Awad A, Fina F, Goyanes A, et al. 3D printing: Principles and pharmaceutical applications of selective laser sintering. International Journal of Pharmaceutics. 2020;586:119594.
  • 37. Mohanty S, Harun AI Rashid M, Mridul M, et al.Application of Artificial Intelligence in COVID-19 drug repurposing. Diabetes & Metabolic Syndrome:Clinical Research & Reviews. 2020;14(5):1027–31.
  • 38. Beck BR, Shin B, Choi Y, et al. Predicting commercially available antiviral drugs that may act on the novel coronavirus (SARS-CoV-2) through a drug-target interaction deep learning model. Computational and Structural Biotechnology Journal. 2020;18:784–90.
  • 39. Stokes JM, Yang K, Swanson K, et al. A Deep Learning Approach to Antibiotic Discovery. Cell. 2020;180(4):688-702.e13.
  • 40. Muraro C, Polato M, Bortoli M, et al. Radical scavenging activity of natural antioxidants and drugs: Development of a combined machine learning and quantum chemistry protocol. The Journal of Chemical Physics. 2020;153(11):114117.
  • 41. Wong F, de la Fuente-Nunez C, Collins JJ. Leveraging artificial intelligence in the fight against infectious diseases. Science. 2023;381(6654):164–70.
  • 42. Russo G, Reche P, Pennisi M, et al. The combination of artificial intelligence and systems biology for intelligent vaccine design. Expert Opinion onDrug Discovery. 2020;15(11):1267–81.
  • 43. Giacobbe DR, Zhang Y, de la Fuente J. Explainable artificial intelligence and machine learning: novel approaches to face infectious diseases challenges. Annals of Medicine. 2023;55(2):2286336.
There are 43 citations in total.

Details

Primary Language English
Subjects Infectious Diseases
Journal Section Review
Authors

Selda Aslan 0000-0001-8695-7118

Early Pub Date July 4, 2024
Publication Date
Submission Date June 7, 2024
Acceptance Date June 13, 2024
Published in Issue Year 2024 Volume: 5 Issue: 2

Cite

Vancouver Aslan S. ARTIFICIAL INTELLIGENCE IN CLINICAL APPLICATIONS FOR INFECTIOUS DISEASES: DIAGNOSIS, TREATMENT AND IMMUNIZATION. Exp Appl Med Sci. 2024;5(2):95-106.

    22718  2043020542   20575   20690    20805   21108       22245 

22392  22684  22717