Araştırma Makalesi
BibTex RIS Kaynak Göster

COVID-19 Pandemisinin Türkiye'de Troposferik NO2 Üzerine Etkileri

Yıl 2022, Cilt: 31 Sayı: 2, 255 - 264, 18.12.2022
https://doi.org/10.51800/ecd.1109104

Öz

COVID-19 pandemisi, antropojenik faaliyetlere getirilen kısıtlamalar nedeniyle troposferik NO2 seviyelerini önemli ölçüde etkilemiştir. Bu çalışma, NO2’in COVID-19 ile olan ilişkisinin uydular aracılığıyla belirlenmesini Türkiye üzerinde incelemektedir. 2015 – 2019 yılları arasındaki OMI troposferik NO2 verileri baz alınarak 2020 yılı verileri ile karşılaştırılmıştır. Türkiye genelinde Nisan, Mayıs ve Aralık aylarında kayda değer bir düşüş saptanmış, en fazla fark ise yüksek nüfuslu ve sanayileşmiş şehirlerde gözlemlenmiştir. Troposferik NO2 seviyeleri, sokağa çıkma yasağının kısmen kaldırıldığı aylarda neredeyse normale dönmüştür. Diğer bir yandan, bu çalışmada seçilmiş bazı şehirlerde nüfus hareketliliği ile NO2 seviyelerindeki değişim arasındaki ilişkiyi açıklamak için Google Mobility verilerini kullanılmıştır. Çalışmanın sonuçları dünya çapında azalan antropojenik aktivitenin troposferik NO2 seviyeleri üzerindeki etkileri ile uyum göstermektedir. Ancak, Türkiye'nin kendine özgü sokağa çıkma yasağı prosedürleri, NO2 seviyelerinde ayrı bir örüntü ortaya çıkarmıştır.

Kaynakça

  • Baldasano, J. M. (2020). COVID-19 lockdown effects on air quality by NO2 in the cities of Barcelona and Madrid (Spain). Science of the Total Environment, 741, 140353.
  • Bauwens, M., Compernolle, S., Stavrakou, T., Müller, J. F., Van Gent, J., Eskes, H., ... & Zehner, C. (2020). Impact of coronavirus outbreak on NO2 pollution assessed using TROPOMI and OMI observations. Geophysical Research Letters, 47(11), e2020GL087978.
  • Biswal, A., Singh, T., Singh, V., Ravindra, K., & Mor, S. (2020). COVID-19 lockdown and its impact on tropospheric NO2 concentrations over India using satellite-based data. Heliyon, 6(9), e04764.
  • Boersma, K. F., Eskes, H. J., Dirksen, R. J., van der A, R. J. J., Veefkind, P., Stammes, P., ... & Claas, J. (2011). An improved retrieval of tropospheric NO2 columns from the Ozone Monitoring Instrument. Atmos. Meas. Tech, 4, 1905-1928.
  • Castellanos, P., & Boersma, K. F. (2012). Reductions in nitrogen oxides over Europe driven by environmental policy and economic recession. Scientific reports, 2(1), 1-7.
  • Chan, H. F., Skali, A., Savage, D. A., Stadelmann, D., & Torgler, B. (2020). Risk attitudes and human mobility during the COVID-19 pandemic. Scientific reports, 10(1), 1-13.
  • Crippa, M., Guizzardi, D., Muntean, M., Schaaf, E., Dentener, F., van Aardenne, J. A., ... & Janssens-Maenhout, G. (2018). Gridded emissions of air pollutants for the period 1970–2012 within EDGAR v4. 3.2. Earth Syst. Sci. Data, 10(4), 1987-2013.
  • Gautam, S. (2020). COVID-19: air pollution remains low as people stay at home. Air Quality, Atmosphere & Health, 13(7), 853-857.
  • Hashim, B. M., Al-Naseri, S. K., Al-Maliki, A., & Al-Ansari, N. (2021). Impact of COVID-19 lockdown on NO2, O3, PM2. 5 and PM10 concentrations and assessing air quality changes in Baghdad, Iraq. Science of the Total Environment, 754, 141978.
  • Hoang, A. T., Huynh, T. T., Nguyen, X. P., Nguyen, T. K. T., & Le, T. H. (2021). An analysis and review on the global NO2 emission during lockdowns in COVID-19 period. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 1-21.
  • Irie, H., Muto, T., Itahashi, S., Kurokawa, J. I., & Uno, I. (2016). Turnaround of tropospheric nitrogen dioxide pollution trends in China, Japan, and South Korea. Sola, 12, 170-174.
  • Kaplan, G., & Avdan, Z. Y. (2020). COVID-19: Spaceborne nitrogen dioxide over Turkey. Eskişehir Technical University Journal of Science and Technology A-Applied Sciences and Engineering, 21(2), 251-255.
  • Koukouli, M. E., Skoulidou, I., Karavias, A., Parcharidis, I., Balis, D., Manders, A., ... & van Geffen, J. (2021). Sudden changes in nitrogen dioxide emissions over Greece due to lockdown after the outbreak of COVID-19. Atmospheric Chemistry and Physics, 21(3), 1759-1774.
  • Lelieveld, J., Beirle, S., Hörmann, C., Stenchikov, G., & Wagner, T. (2015). Abrupt recent trend changes in atmospheric nitrogen dioxide over the Middle East. Science advances, 1(7), e1500498.
  • Liu, F., Page, A., Strode, S. A., Yoshida, Y., Choi, S., Zheng, B., ... & Joiner, J. (2020). Abrupt decline in tropospheric nitrogen dioxide over China after the outbreak of COVID-19. Science Advances, 6(28), eabc2992.
  • Luo, Z., Xu, H., Zhang, Z., Zheng, S., & Liu, H. (2022). Year-round changes in tropospheric nitrogen dioxide caused by COVID-19 in China using satellite observation. Journal of Environmental Sciences.
  • Nakada, L. Y. K., & Urban, R. C. (2020). COVID-19 pandemic: Impacts on the air quality during the partial lockdown in São Paulo state, Brazil. Science of the Total Environment, 730, 139087.
  • NASA (2021), https://svs.gsfc.nasa.gov/4810, last access July 2021.
  • Naveed-ul-Zafar, M. (2021). Spatio-temporal analysis of Tropospheric NO2 Pollution during the COVID-19 Pandemic Lockdowns. Masters Dissertation in Geoinformatics. Aalborg University Copenhagen, Denmark.
  • Nouvellet, P., Bhatia, S., Cori, A., Ainslie, K. E., Baguelin, M., Bhatt, S., ... & Donnelly, C. A. (2021). Reduction in mobility and COVID-19 transmission. Nature communications, 12(1), 1-9.
  • Orak, N. H., & Ozdemir, O. (2021). The impacts of COVID-19 lockdown on PM10 and SO2 concentrations and association with human mobility across Turkey. Environmental research, 197, 111018.
  • Paraschiv, S., Constantin, D. E., Paraschiv, S. L., & Voiculescu, M. (2017). OMI and ground-based in-situ tropospheric nitrogen dioxide observations over several important European cities during 2005–2014. International journal of environmental research and public health, 14(11), 1415.
  • Prakash, S., Goswami, M., Khan, Y. I., & Nautiyal, S. (2021). Environmental impact of COVID-19 led lockdown: A satellite data-based assessment of air quality in Indian megacities. Urban Climate, 38, 100900.
  • Represa, N. S., Della Ceca, L. S., Abril, G., Ferreyra, M. F. G., & Scavuzzo, C. M. (2021). Atmospheric Pollutants Assessment during the COVID-19 Lockdown Using Remote Sensing and Ground-based Measurements in Buenos Aires, Argentina. Aerosol and Air Quality Research, 21(3), 200486.
  • Sharma, S., Zhang, M., Gao, J., Zhang, H., & Kota, S. H. (2020). Effect of restricted emissions during COVID-19 on air quality in India. Science of the Total Environment, 728, 138878.
  • The Economist, 2020, What Turkey got right about the pandemic, Last access February 2021.
  • The World Bank (2021) https://data.worldbank.org/, last access February 2021.
  • Tobías, A., Carnerero, C., Reche, C., Massagué, J., Via, M., Minguillón, M. C., ... & Querol, X. (2020). Changes in air quality during the lockdown in Barcelona (Spain) one month into the SARS-CoV-2 epidemic. Science of the Total Environment, 726, 138540.
  • Topuz, M., Karabulut, M. (2021). Koronavirüs (Covid-19) Tedbirleri Sürecinde Hava Kirliliği Parametrelerinde Meydana Gelen Değişimler: Doğu Akdeniz Örneği. International journal of geography and geography education (Online), 26(44), 428-444.
  • US EPA (2016). US EPA Integrated Science Assessment (ISA) for Nitrogen Dioxide - Health Criteria (Reports and Assessments)
  • Yilmazkuday, H. (2020). Stay-at-home works to fight against COVID-19: international evidence from Google mobility data. Journal of Human Behavior in the Social Environment, 1-11.
  • Zhang, L., Lee, C. S., Zhang, R., & Chen, L. (2017). Spatial and temporal evaluation of long term trend (2005–2014) of OMI retrieved NO2 and SO2 concentrations in Henan Province, China. Atmospheric environment, 154, 151-166.
  • Zhou, Y., Brunner, D., Hueglin, C., Henne, S., & Staehelin, J. (2012). Changes in OMI tropospheric NO2 columns over Europe from 2004 to 2009 and the influence of meteorological variability. Atmospheric Environment, 46, 482-495.

Impacts of COVID-19 Pandemic on Tropospheric NO2 over Turkey

Yıl 2022, Cilt: 31 Sayı: 2, 255 - 264, 18.12.2022
https://doi.org/10.51800/ecd.1109104

Öz

The COVID-19 pandemic has strongly affected the tropospheric NO2 levels due to imposed restrictions on anthropogenic activities. Utilizing space-based estimations of tropospheric NO2, here we examine the relationship of tropospheric NO2 to COVID-19 over Turkey. We have used 2015 - 2019 OMI tropospheric NO2 data as a baseline period and have compared it with 2020. We have found a notable decrease in NO2 in Turkey in April, May, and December while the most significant difference can be observed in the most populated and industrialized cities. The tropospheric NO2 levels returned to nearly a regular pattern in the months that the curfew was partially lifted. We also have used Google Mobility data to explicate the relationship between mobility and the change in NO2 levels for selected cities. Our research corroborates the effects of decreased anthropogenic activity on tropospheric NO2 levels worldwide during the COVID-19 pandemic. However, the distinctive curfew procedures of Turkey revealed a discrete pattern on NO2 levels.

Kaynakça

  • Baldasano, J. M. (2020). COVID-19 lockdown effects on air quality by NO2 in the cities of Barcelona and Madrid (Spain). Science of the Total Environment, 741, 140353.
  • Bauwens, M., Compernolle, S., Stavrakou, T., Müller, J. F., Van Gent, J., Eskes, H., ... & Zehner, C. (2020). Impact of coronavirus outbreak on NO2 pollution assessed using TROPOMI and OMI observations. Geophysical Research Letters, 47(11), e2020GL087978.
  • Biswal, A., Singh, T., Singh, V., Ravindra, K., & Mor, S. (2020). COVID-19 lockdown and its impact on tropospheric NO2 concentrations over India using satellite-based data. Heliyon, 6(9), e04764.
  • Boersma, K. F., Eskes, H. J., Dirksen, R. J., van der A, R. J. J., Veefkind, P., Stammes, P., ... & Claas, J. (2011). An improved retrieval of tropospheric NO2 columns from the Ozone Monitoring Instrument. Atmos. Meas. Tech, 4, 1905-1928.
  • Castellanos, P., & Boersma, K. F. (2012). Reductions in nitrogen oxides over Europe driven by environmental policy and economic recession. Scientific reports, 2(1), 1-7.
  • Chan, H. F., Skali, A., Savage, D. A., Stadelmann, D., & Torgler, B. (2020). Risk attitudes and human mobility during the COVID-19 pandemic. Scientific reports, 10(1), 1-13.
  • Crippa, M., Guizzardi, D., Muntean, M., Schaaf, E., Dentener, F., van Aardenne, J. A., ... & Janssens-Maenhout, G. (2018). Gridded emissions of air pollutants for the period 1970–2012 within EDGAR v4. 3.2. Earth Syst. Sci. Data, 10(4), 1987-2013.
  • Gautam, S. (2020). COVID-19: air pollution remains low as people stay at home. Air Quality, Atmosphere & Health, 13(7), 853-857.
  • Hashim, B. M., Al-Naseri, S. K., Al-Maliki, A., & Al-Ansari, N. (2021). Impact of COVID-19 lockdown on NO2, O3, PM2. 5 and PM10 concentrations and assessing air quality changes in Baghdad, Iraq. Science of the Total Environment, 754, 141978.
  • Hoang, A. T., Huynh, T. T., Nguyen, X. P., Nguyen, T. K. T., & Le, T. H. (2021). An analysis and review on the global NO2 emission during lockdowns in COVID-19 period. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 1-21.
  • Irie, H., Muto, T., Itahashi, S., Kurokawa, J. I., & Uno, I. (2016). Turnaround of tropospheric nitrogen dioxide pollution trends in China, Japan, and South Korea. Sola, 12, 170-174.
  • Kaplan, G., & Avdan, Z. Y. (2020). COVID-19: Spaceborne nitrogen dioxide over Turkey. Eskişehir Technical University Journal of Science and Technology A-Applied Sciences and Engineering, 21(2), 251-255.
  • Koukouli, M. E., Skoulidou, I., Karavias, A., Parcharidis, I., Balis, D., Manders, A., ... & van Geffen, J. (2021). Sudden changes in nitrogen dioxide emissions over Greece due to lockdown after the outbreak of COVID-19. Atmospheric Chemistry and Physics, 21(3), 1759-1774.
  • Lelieveld, J., Beirle, S., Hörmann, C., Stenchikov, G., & Wagner, T. (2015). Abrupt recent trend changes in atmospheric nitrogen dioxide over the Middle East. Science advances, 1(7), e1500498.
  • Liu, F., Page, A., Strode, S. A., Yoshida, Y., Choi, S., Zheng, B., ... & Joiner, J. (2020). Abrupt decline in tropospheric nitrogen dioxide over China after the outbreak of COVID-19. Science Advances, 6(28), eabc2992.
  • Luo, Z., Xu, H., Zhang, Z., Zheng, S., & Liu, H. (2022). Year-round changes in tropospheric nitrogen dioxide caused by COVID-19 in China using satellite observation. Journal of Environmental Sciences.
  • Nakada, L. Y. K., & Urban, R. C. (2020). COVID-19 pandemic: Impacts on the air quality during the partial lockdown in São Paulo state, Brazil. Science of the Total Environment, 730, 139087.
  • NASA (2021), https://svs.gsfc.nasa.gov/4810, last access July 2021.
  • Naveed-ul-Zafar, M. (2021). Spatio-temporal analysis of Tropospheric NO2 Pollution during the COVID-19 Pandemic Lockdowns. Masters Dissertation in Geoinformatics. Aalborg University Copenhagen, Denmark.
  • Nouvellet, P., Bhatia, S., Cori, A., Ainslie, K. E., Baguelin, M., Bhatt, S., ... & Donnelly, C. A. (2021). Reduction in mobility and COVID-19 transmission. Nature communications, 12(1), 1-9.
  • Orak, N. H., & Ozdemir, O. (2021). The impacts of COVID-19 lockdown on PM10 and SO2 concentrations and association with human mobility across Turkey. Environmental research, 197, 111018.
  • Paraschiv, S., Constantin, D. E., Paraschiv, S. L., & Voiculescu, M. (2017). OMI and ground-based in-situ tropospheric nitrogen dioxide observations over several important European cities during 2005–2014. International journal of environmental research and public health, 14(11), 1415.
  • Prakash, S., Goswami, M., Khan, Y. I., & Nautiyal, S. (2021). Environmental impact of COVID-19 led lockdown: A satellite data-based assessment of air quality in Indian megacities. Urban Climate, 38, 100900.
  • Represa, N. S., Della Ceca, L. S., Abril, G., Ferreyra, M. F. G., & Scavuzzo, C. M. (2021). Atmospheric Pollutants Assessment during the COVID-19 Lockdown Using Remote Sensing and Ground-based Measurements in Buenos Aires, Argentina. Aerosol and Air Quality Research, 21(3), 200486.
  • Sharma, S., Zhang, M., Gao, J., Zhang, H., & Kota, S. H. (2020). Effect of restricted emissions during COVID-19 on air quality in India. Science of the Total Environment, 728, 138878.
  • The Economist, 2020, What Turkey got right about the pandemic, Last access February 2021.
  • The World Bank (2021) https://data.worldbank.org/, last access February 2021.
  • Tobías, A., Carnerero, C., Reche, C., Massagué, J., Via, M., Minguillón, M. C., ... & Querol, X. (2020). Changes in air quality during the lockdown in Barcelona (Spain) one month into the SARS-CoV-2 epidemic. Science of the Total Environment, 726, 138540.
  • Topuz, M., Karabulut, M. (2021). Koronavirüs (Covid-19) Tedbirleri Sürecinde Hava Kirliliği Parametrelerinde Meydana Gelen Değişimler: Doğu Akdeniz Örneği. International journal of geography and geography education (Online), 26(44), 428-444.
  • US EPA (2016). US EPA Integrated Science Assessment (ISA) for Nitrogen Dioxide - Health Criteria (Reports and Assessments)
  • Yilmazkuday, H. (2020). Stay-at-home works to fight against COVID-19: international evidence from Google mobility data. Journal of Human Behavior in the Social Environment, 1-11.
  • Zhang, L., Lee, C. S., Zhang, R., & Chen, L. (2017). Spatial and temporal evaluation of long term trend (2005–2014) of OMI retrieved NO2 and SO2 concentrations in Henan Province, China. Atmospheric environment, 154, 151-166.
  • Zhou, Y., Brunner, D., Hueglin, C., Henne, S., & Staehelin, J. (2012). Changes in OMI tropospheric NO2 columns over Europe from 2004 to 2009 and the influence of meteorological variability. Atmospheric Environment, 46, 482-495.
Toplam 33 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Beşeri Coğrafya
Bölüm Araştırma Makaleleri
Yazarlar

Doğukan Doğu Yavaşlı 0000-0002-0150-867X

M. Kirami Ölgen 0000-0002-6938-4482

Yayımlanma Tarihi 18 Aralık 2022
Gönderilme Tarihi 26 Nisan 2022
Kabul Tarihi 17 Kasım 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 31 Sayı: 2

Kaynak Göster

APA Yavaşlı, D. D., & Ölgen, M. K. (2022). Impacts of COVID-19 Pandemic on Tropospheric NO2 over Turkey. Ege Coğrafya Dergisi, 31(2), 255-264. https://doi.org/10.51800/ecd.1109104