Esnek Yapıların Çoklu Taşıt Hareketi Etkisi Altında Dinamik Analizi
Yıl 2018,
Cilt: 5 Sayı: 1, 176 - 181, 31.01.2018
Mehmet Akif Koç
,
İsmail Esen
,
Mustafa Eroğlu
,
Yusuf Çay
,
Ömer Çerlek
Öz
Bu çalışmada, esnek yapılardan çoklu taşıt geçmesi durumunda dinamik davranışa etki eden parametreler detaylı şekilde incelenmiştir. Çalışmada esnek yapı olarak; Euler-Bernoulli ince kiriş teorisine göre modellenen basit mesnetli köprü kirişi göz önüne alınmıştır. Köprü kirişi ile üzerinden geçen taşıtların temasıyla oluşan hareket denklemleri; sistemin kinetik ve potansiyel enerjisi çıkarıldıktan sonra Lagrange denklemi kullanılarak elde edilmiştir. Sistemin hareketini ifade eden ikinci dereceden diferansiyel denklemler çalışmada belirtilen durum değişkenlerini kullanarak; birinci derece durum uzay formuna dönüştürülmüştür. Diferansiyel denklem sistemi; zamana göre dördüncü dereceden Runge-Kutta algoritması ile MATLAB ticari yazılımında hazırlanan program kullanılarak yüksek hassasiyetle çözülmüştür.
Kaynakça
- [1] L. Fryba, Vibration solids and structures under moving loads, Thomas Telford House, 1999.
- [2] B. Dyniewicz, C.I. Bajer, New Consistent Numerical Modelling of a Travelling Accelerating Concentrated Mass, World J. Mech. 2 (2012) 281–287. doi:10.4236/wjm.2012.26034.
- [3] H.P. Lee, Transverse vibration of a Timoshenko beam acted on by an accelerating mass, Appl. Acoust. 47 (1996) 319–330. doi:10.1016/0003-682X(95)00067-J.
- [4] İ. Esen, A new FEM procedure for transverse and longitudinal vibration analysis of thin rectangular plates subjected to a variable velocity moving load along an arbitrary trajectory, Lat. Am. J. Solids Struct. 12 (2015) 808–830.
- [5] İ. Esen, M.A. Koç, Dynamics of 35 mm anti-aircraft cannon barrel durig firing, in: Int. Symp. Comput. Sci. Eng., Aydın, 2013: pp. 252–257.
- [6] M. Fafard, M. Bennur, M. Savard, A general multi-axle vehicle model to study the bridge- vehicle interaction, Eng. Comput. 14 (1997) 491–508. doi:10.1108/02644409710170339.
- [7] G. Michaltsos, D. Sophianopoulos, A.N. Kounadis, The Effect of a Moving Mass and Other Parameters on the Dynamic Response of a Simply Supported Beam, J. Sound Vib. 191 (1996) 357–362. doi:10.1006/jsvi.1996.0127.
- [8] K. Youcef, T. Sabiha, D. El Mostafa, D. Ali, M. Bachir, Dynamic analysis of train-bridge system and riding comfort of trains, J. Mech. Sci. Technol. 27 (2013) 951–962. doi:10.1007/s12206-013-0206-8.
- [9] Y.B. Yang, M.C. Cheng, K.C. Chang, Frequency Variation in Vehicle–Bridge Interaction Systems, Int. J. Struct. Stab. Dyn. 13 (2013) 1350019. doi:10.1142/S0219455413500193.
- [10] H. Azimi, K. Galal, O.A. Pekau, A numerical element for vehicle-bridge interaction analysis of vehicles experiencing sudden deceleration, Eng. Struct. 49 (2013) 792–805. doi:10.1016/j.engstruct.2012.12.031.
- [11] J. Wyss, D. Su, Y. Fujino, Prediction of vehicle-induced local responses and application to a skewed girder bridge, 33 (2011) 1088–1097. doi:10.1016/j.engstruct.2010.12.020.
- [12] B. Liu, Y. Wang, P. Hu, Q. Yuan, Impact coefficient and reliability of mid-span continuous beam bridge under action of extra heavy vehicle with low speed, J. Cent. South Univ. 22 (2015) 1510–1520. doi:10.1007/s11771-015-2668-6.
- [13] E. Esmailzadeh, N. Jalili, Vehicle–passenger–structure interaction of uniform bridges traversed by moving vehicles, J. Sound Vib. 260 (2003) 611–635. doi:10.1016/S0022-460X(02)00960-4.
- [14] P. Lou, A vehicle-track-bridge interaction element considering vehicle’s pitching effect, Finite Elem. Anal. Des. 41 (2005) 397–427. doi:10.1016/j.finel.2004.07.004.
Dynamic Analysis of Flexible Structures Under The Influence of Moving Multiple Vehicles
Yıl 2018,
Cilt: 5 Sayı: 1, 176 - 181, 31.01.2018
Mehmet Akif Koç
,
İsmail Esen
,
Mustafa Eroğlu
,
Yusuf Çay
,
Ömer Çerlek
Öz
In this study, the parameters affecting the dynamic behavior of flexible structures under the influence of multiple vehicle passages are examined in detail. The flexible structure considered in the study is considered as a bridge girder with simple supported boundary conditions which modelled according to Euler-Bernoulli thin beam theory. The equations of motion of the bridge beam in contact with the vehicle passing over the bridge were obtained by using the Lagrange equation after the kinetic and potential energies of the system were obtained. The second-order differential equations representing the motion of the system are transformed from the first-order state space matrix representation to the first-order state using the state variables specified in the study. The system of differential equations is then solved with high accuracy using a special program prepared in the MATLAB commercial software using the Runge-Kutta algorithm from the fourth degree in the time domain.
Kaynakça
- [1] L. Fryba, Vibration solids and structures under moving loads, Thomas Telford House, 1999.
- [2] B. Dyniewicz, C.I. Bajer, New Consistent Numerical Modelling of a Travelling Accelerating Concentrated Mass, World J. Mech. 2 (2012) 281–287. doi:10.4236/wjm.2012.26034.
- [3] H.P. Lee, Transverse vibration of a Timoshenko beam acted on by an accelerating mass, Appl. Acoust. 47 (1996) 319–330. doi:10.1016/0003-682X(95)00067-J.
- [4] İ. Esen, A new FEM procedure for transverse and longitudinal vibration analysis of thin rectangular plates subjected to a variable velocity moving load along an arbitrary trajectory, Lat. Am. J. Solids Struct. 12 (2015) 808–830.
- [5] İ. Esen, M.A. Koç, Dynamics of 35 mm anti-aircraft cannon barrel durig firing, in: Int. Symp. Comput. Sci. Eng., Aydın, 2013: pp. 252–257.
- [6] M. Fafard, M. Bennur, M. Savard, A general multi-axle vehicle model to study the bridge- vehicle interaction, Eng. Comput. 14 (1997) 491–508. doi:10.1108/02644409710170339.
- [7] G. Michaltsos, D. Sophianopoulos, A.N. Kounadis, The Effect of a Moving Mass and Other Parameters on the Dynamic Response of a Simply Supported Beam, J. Sound Vib. 191 (1996) 357–362. doi:10.1006/jsvi.1996.0127.
- [8] K. Youcef, T. Sabiha, D. El Mostafa, D. Ali, M. Bachir, Dynamic analysis of train-bridge system and riding comfort of trains, J. Mech. Sci. Technol. 27 (2013) 951–962. doi:10.1007/s12206-013-0206-8.
- [9] Y.B. Yang, M.C. Cheng, K.C. Chang, Frequency Variation in Vehicle–Bridge Interaction Systems, Int. J. Struct. Stab. Dyn. 13 (2013) 1350019. doi:10.1142/S0219455413500193.
- [10] H. Azimi, K. Galal, O.A. Pekau, A numerical element for vehicle-bridge interaction analysis of vehicles experiencing sudden deceleration, Eng. Struct. 49 (2013) 792–805. doi:10.1016/j.engstruct.2012.12.031.
- [11] J. Wyss, D. Su, Y. Fujino, Prediction of vehicle-induced local responses and application to a skewed girder bridge, 33 (2011) 1088–1097. doi:10.1016/j.engstruct.2010.12.020.
- [12] B. Liu, Y. Wang, P. Hu, Q. Yuan, Impact coefficient and reliability of mid-span continuous beam bridge under action of extra heavy vehicle with low speed, J. Cent. South Univ. 22 (2015) 1510–1520. doi:10.1007/s11771-015-2668-6.
- [13] E. Esmailzadeh, N. Jalili, Vehicle–passenger–structure interaction of uniform bridges traversed by moving vehicles, J. Sound Vib. 260 (2003) 611–635. doi:10.1016/S0022-460X(02)00960-4.
- [14] P. Lou, A vehicle-track-bridge interaction element considering vehicle’s pitching effect, Finite Elem. Anal. Des. 41 (2005) 397–427. doi:10.1016/j.finel.2004.07.004.