Araştırma Makalesi
BibTex RIS Kaynak Göster

Hexagonal Boron Nitride Nanoplates-Nano Ag / Epoxy Composites: Production, Mechanical and Thermal Properties

Yıl 2019, Cilt: 6 Sayı: 3, 585 - 593, 30.09.2019
https://doi.org/10.31202/ecjse.559083

Öz

In this study, the
production, mechanical and thermal properties of hexagonal boron nitride
nanoparticles (hBNNPs) and different ratios (0.5, 1, and 1.5% by weight) of
nano silver (Ag) particles epoxy based nanocomposites were investigated.
Tensile specimens of epoxy based hybrid nanocomposites produced according to
ASTM D638-10 were subjected to tensile test under constant crosshead speed. The
maximum loads, tensile strengths, modulus of elasticity, toughness and
elongation values ​​of the modified epoxy hybrid nanocomposites were calculated
and these properties were compared with the reference sample. The reference
sample and 0.5% by weight of BNNPs and 1% by weight of nano Ag particles
reinforced nanocomposite the maximum loads were 1742.11 N and 2262.80 N
respectively, 0.5BNNP+1NanoAg epoxy based nanocomposite was observed increase
of 30%. The fracture surfaces of hybrid nanocomposites were examined by
scanning electron microscopy (SEM) and the damage mechanisms were revealed. In
addition, epoxy resin and BNNPs and nano Ag reinforced epoxy nanocomposites
glass transition temperature, melting temperature, thermal decomposition
temperature and mass loss, Thermogravimetric and Differential Thermal Analysis
(TGA / DTA) were examined.

Kaynakça

  • [1] Petrie EM. Handbook of adhesives and sealants: McGraw-Hill; 2000.
  • [2] Kozma L, Olefjord I. Basic Processes of Surface Preparation and Bond Formation of Adhesively Joined Aluminum, Mater Sci Tech Ser, 3(10), 860-74, 1987.
  • [3] Sun LY, Gibson RF, Gordaninejad F, Suhr J. Energy absorption capability of nanocomposites: A review, Compos Sci Technol, 69(14), 2392-409, 2009.
  • [4] Suhr J, Koratkar NA. Energy dissipation in carbon nanotube composites: a review, Journal of Materials Science, 43(13), 4370-82, 2008.
  • [5] Han JT, Cho K. Nanoparticle-induced enhancement in fracture toughness of highly loaded epoxy composites over a wide temperature range, Journal of Materials Science, 41(13), 4239-45, 2006.
  • [6] Liang Y, Pearson R. Toughening mechanisms in epoxy–silica nanocomposites (ESNs), Polymer, 50(20), 4895-905, 2009.
  • [7] Wang X, Jin J, Song M. An investigation of the mechanism of graphene toughening epoxy, Carbon, 65, 324-33, 2013.
  • [8] Chandrasekaran S, Sato N, Tölle F, Mülhaupt R, Fiedler B, Schulte K. Fracture toughness and failure mechanism of graphene based epoxy composites, Compos Sci Technol, 97, 90-9, 2014.
  • [9] Wetzel B, Rosso P, Haupert F, Friedrich K. Epoxy nanocomposites–fracture and toughening mechanisms, Engineering fracture mechanics, 73(16), 2375-98, 2006.
  • [10] Carolan D, Ivankovic A, Kinloch A, Sprenger S, Taylor A. Toughening of epoxy-based hybrid nanocomposites, Polymer, 97, 179-90, 2016.
  • [11] Ekrem M. Mechanical properties of MWCNT Reinforced polyvinyl alcohol nanofiber mats by electrospinnig method, El-Cezeri Journal of Science and Engineering, 4(2), 2017.
  • [12] Marouf BT, Mai Y-W, Bagheri R, Pearson RA. Toughening of epoxy nanocomposites: nano and hybrid effects, Polymer Reviews, 56(1), 70-112, 2016.
  • [13] Mansourian-Tabaei M, Jafari SH, Khonakdar HA. Lap Shear Strength and Thermal Stability of Diglycidyl Ether of Bisphenol A/ Epoxy Novolac Adhesives with Nanoreinforcing Fillers, Journal of Applied Polymer Science, 131(6), 2014.
  • [14] Spitalsky Z, Tasis D, Papagelis K, Galiotis C. Carbon nanotube–polymer composites: chemistry, processing, mechanical and electrical properties, Progress in polymer science, 35(3), 357-401, 2010.
  • [15] Jin FL, Park SJ. Thermal properties of epoxy resin/filler hybrid composites, Polymer Degradation and Stability, 97(11), 2148-53, 2012.
  • [16] Meng Q, Wang CH, Saber N, Kuan H-C, Dai J, Friedrich K, et al., Nanosilica-toughened polymer adhesives, Materials & Design, 61, 75-86, 2014.
  • [17] Ulus H, Ustun T, Eskizeybek V, Sahin OS, Avci A, Ekrem M. Boron nitride-MWCNT/epoxy hybrid nanocomposites: Preparation and mechanical properties, Applied Surface Science, 318, 37-42, 2014.
  • [18] Domun N, Paton K, Hadavinia H, Sainsbury T, Zhang T, Mohamud H. Enhancement of fracture toughness of epoxy nanocomposites by combining nanotubes and nanosheets as fillers, Materials, 10(10), 1179, 2017.
  • [19] Chisholm N, Mahfuz H, Rangari VK, Ashfaq A, Jeelani S. Fabrication and mechanical characterization of carbon/SiC-epoxy nanocomposites, Compos Struct, 67(1), 115-24, 2005.
  • [20] Khan SU, Pothnis JR, Kim J-K. Effects of carbon nanotube alignment on electrical and mechanical properties of epoxy nanocomposites, Composites Part A: Applied Science and Manufacturing, 49, 26-34, 2013.
  • [21] Korayem AH, Barati MR, Simon GP, Zhao XL, Duan WH. Reinforcing brittle and ductile epoxy matrices using carbon nanotubes masterbatch, Composites Part A: Applied Science and Manufacturing, 61, 126-33, 2014.

Hekzagonal Bor Nitrür Nanoplate-Nano Ag/Epoksi Kompozitler: Üretimi, Mekanik ve Termal Özellikleri

Yıl 2019, Cilt: 6 Sayı: 3, 585 - 593, 30.09.2019
https://doi.org/10.31202/ecjse.559083

Öz

Bu çalışmada, ağırlıkça % 0.5 Hekzagonal Bor Nitrür
Nanoplateler (hBNNPs) ile ağırlıkça farklı oranlarda (% 0.5, 1 ve 1.5) nano
gümüş (Ag) parçacıklı epoksi bazlı nanokompozitlerin üretimi, mekanik ve termal
özellikleri araştırılmıştır. ASTM D638-10 standardına göre üretimi yapılan
epoksi esaslı hibrid nanokompozitlerin çekme numuneleri sabit yük altında çekme
testine tabi tutulmuştur. Modifiye edilmiş epoksi hibrid nanokompozitlerin
maksimum yükleri, çekme dayanımları, elastiklik modülleri, toklukları ve uzama
değerleri hesaplanmış olup, bu testin sonucunda bu özellikler referans
numuneyle kıyaslanmıştır. Referans numune ile ağırlıkça % 0.5 oranındaki BNNPs
ve ağırlıkça % 1 oranındaki nano Ag parçacık takviyeli nanokompozitin maksimum
yükleri sırasıyla 1742.11 N ve 2262.80 N olup, 0.5BNNP+1NanoAg epoksi esaslı
kompozit % 30 oranında artış gözlemlenmiştir. Hibrid nanokompozitlerin kırılmış
yüzeyleri taramalı elektron mikroskopu (SEM) ile incelenerek hasar
mekanizmaları ortaya çıkarılmıştır. Ayrıca epoksi reçine ile BNNPs ve nano Ag
takviyeli epoksi nanokompozitlerin camsı geçiş sıcaklığı, ergime sıcaklığı,
termal bozunma sıcaklığı ve kütle kaybı, Termogravimetri ve Diferansiyel Termal
Analizleriyle (TGA/DTA) incelenmiştir.

Kaynakça

  • [1] Petrie EM. Handbook of adhesives and sealants: McGraw-Hill; 2000.
  • [2] Kozma L, Olefjord I. Basic Processes of Surface Preparation and Bond Formation of Adhesively Joined Aluminum, Mater Sci Tech Ser, 3(10), 860-74, 1987.
  • [3] Sun LY, Gibson RF, Gordaninejad F, Suhr J. Energy absorption capability of nanocomposites: A review, Compos Sci Technol, 69(14), 2392-409, 2009.
  • [4] Suhr J, Koratkar NA. Energy dissipation in carbon nanotube composites: a review, Journal of Materials Science, 43(13), 4370-82, 2008.
  • [5] Han JT, Cho K. Nanoparticle-induced enhancement in fracture toughness of highly loaded epoxy composites over a wide temperature range, Journal of Materials Science, 41(13), 4239-45, 2006.
  • [6] Liang Y, Pearson R. Toughening mechanisms in epoxy–silica nanocomposites (ESNs), Polymer, 50(20), 4895-905, 2009.
  • [7] Wang X, Jin J, Song M. An investigation of the mechanism of graphene toughening epoxy, Carbon, 65, 324-33, 2013.
  • [8] Chandrasekaran S, Sato N, Tölle F, Mülhaupt R, Fiedler B, Schulte K. Fracture toughness and failure mechanism of graphene based epoxy composites, Compos Sci Technol, 97, 90-9, 2014.
  • [9] Wetzel B, Rosso P, Haupert F, Friedrich K. Epoxy nanocomposites–fracture and toughening mechanisms, Engineering fracture mechanics, 73(16), 2375-98, 2006.
  • [10] Carolan D, Ivankovic A, Kinloch A, Sprenger S, Taylor A. Toughening of epoxy-based hybrid nanocomposites, Polymer, 97, 179-90, 2016.
  • [11] Ekrem M. Mechanical properties of MWCNT Reinforced polyvinyl alcohol nanofiber mats by electrospinnig method, El-Cezeri Journal of Science and Engineering, 4(2), 2017.
  • [12] Marouf BT, Mai Y-W, Bagheri R, Pearson RA. Toughening of epoxy nanocomposites: nano and hybrid effects, Polymer Reviews, 56(1), 70-112, 2016.
  • [13] Mansourian-Tabaei M, Jafari SH, Khonakdar HA. Lap Shear Strength and Thermal Stability of Diglycidyl Ether of Bisphenol A/ Epoxy Novolac Adhesives with Nanoreinforcing Fillers, Journal of Applied Polymer Science, 131(6), 2014.
  • [14] Spitalsky Z, Tasis D, Papagelis K, Galiotis C. Carbon nanotube–polymer composites: chemistry, processing, mechanical and electrical properties, Progress in polymer science, 35(3), 357-401, 2010.
  • [15] Jin FL, Park SJ. Thermal properties of epoxy resin/filler hybrid composites, Polymer Degradation and Stability, 97(11), 2148-53, 2012.
  • [16] Meng Q, Wang CH, Saber N, Kuan H-C, Dai J, Friedrich K, et al., Nanosilica-toughened polymer adhesives, Materials & Design, 61, 75-86, 2014.
  • [17] Ulus H, Ustun T, Eskizeybek V, Sahin OS, Avci A, Ekrem M. Boron nitride-MWCNT/epoxy hybrid nanocomposites: Preparation and mechanical properties, Applied Surface Science, 318, 37-42, 2014.
  • [18] Domun N, Paton K, Hadavinia H, Sainsbury T, Zhang T, Mohamud H. Enhancement of fracture toughness of epoxy nanocomposites by combining nanotubes and nanosheets as fillers, Materials, 10(10), 1179, 2017.
  • [19] Chisholm N, Mahfuz H, Rangari VK, Ashfaq A, Jeelani S. Fabrication and mechanical characterization of carbon/SiC-epoxy nanocomposites, Compos Struct, 67(1), 115-24, 2005.
  • [20] Khan SU, Pothnis JR, Kim J-K. Effects of carbon nanotube alignment on electrical and mechanical properties of epoxy nanocomposites, Composites Part A: Applied Science and Manufacturing, 49, 26-34, 2013.
  • [21] Korayem AH, Barati MR, Simon GP, Zhao XL, Duan WH. Reinforcing brittle and ductile epoxy matrices using carbon nanotubes masterbatch, Composites Part A: Applied Science and Manufacturing, 61, 126-33, 2014.
Toplam 21 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Mürsel Ekrem 0000-0001-5324-7929

Yayımlanma Tarihi 30 Eylül 2019
Gönderilme Tarihi 29 Nisan 2019
Kabul Tarihi 25 Haziran 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 6 Sayı: 3

Kaynak Göster

IEEE M. Ekrem, “Hekzagonal Bor Nitrür Nanoplate-Nano Ag/Epoksi Kompozitler: Üretimi, Mekanik ve Termal Özellikleri”, ECJSE, c. 6, sy. 3, ss. 585–593, 2019, doi: 10.31202/ecjse.559083.