In design stage, weight-strength balance is the most important factor to obtain minimum weight value. Try and error method is used to obtain this balance in the conventional design applications. In the last decades, topology optimization methods are used to calculate this balance.Topology optimization can be defined as the mathematical model, which optimizes material design space according to given constraints and boundary conditions under the applied loads. Also, the material can be balanced by applying topology optimization in terms of the stiffness. The main objective of topology optimization is to obtain strong and lightweight parts with the same characteristics as well as to reduce the amount of material in the parts. Weight of the vehicles is one of the main effective parameters in terms of fuel consumption for the structural engineering applications. Vehicles are subjected to weight load, brake load and centrifugal load when driving mode. Hence, within this study, topology optimization of truck chassis was investigated under the these loading conditions. ANSYS workbench program was used to perform the proposed study. Deformation and stress values of the chassis were investigated. Optimized model was compared with the conventional model. As a result of the study, nearly 14% mass reduction was obtained without exceed permissible stress values.
Fui, T. H., Rahman, R. A., Statics and Dynamics Structural Analysis of A 4.5 Ton Truck Chassis, Jurnal Mekanikal, 2007, 24, 56-67
Aykanat, B., Bir Kamyon Şasisinin Sonlu Elemanlar Yöntemi ile Analizi, Dokuz Eylül Üniversitesi Mühendislik Fakültesi Makine Mühendisliği Bölümü, 2016
Patel H., Panchal, K. C., Jadav, C, S., Structural Analysis of Truck Chassis Frame and Design Optimization for Weight Reduction, International Journal of Engineering and Advanced Technology, 2013, 2(4), 665-668
Rahman, R. A., Tamin, M. N., Kurdi O., Stress Analysis of Heavy Duty Truck Chassis as a Preliminary Data for Its Fatıgue Life Prediction Using Fem, Jurnal Mekanikal, 2008, 26, 76-85
Kurdi, O., Rahman, R. A., Samin, P. M., Optimization of Heavy Duty Truck Chassis Design by Considering Torsional Stiffness and Mass of the Structure, Applied Mechanics and Materials, 2014, 554, 459-463
Kumaş, H., Gencer C., Maraş, H., Determination Fastest Path for Heavy Vehicles Taking into Account Road Slope and Horizontal Curve Radius, Journal of the Faculty of Engineering and Architecture of Gazi University, 2012, 27(2), 385-395
Mahmoodi-k, M., Davoodabadi, I., Višnjić, V., & Afkar, A., Stress and dynamic analysis of optimized trailer chassis. Tehnički vjesnik, 2014, 21(3), 599-608
Wang J., Wang T., Yang Y., Peng Z., Li Z., Wang N., Topology Optimization Design of a Heavy Truck Frame, In: SAE-China, FISITA (eds) Proceedings of the FISITA 2012 World Automotive Congress. Lecture Notes in Electrical Engineering, 2013, 195, 219-227
Asker, H. K., Dawood, T. S., Said, A. F., Stress Analysis of Standard Truck Chassis During Ramping on Block Using Finite Element Method, ARPN Journal of Engineering and Applied Sciences, 2012, 7(2), 641-648
Tikekar, I., Damle. A., Weight Reduction of Heavy Duty Truck Chassis Through Material Optimization, International Journal of Engineering Research and General Science, 2016, 4(3), 140-146
Lowrie, J., Pang, H., & Ngaile, G. (2017). Weight reduction of heavy-duty truck components through hollow geometry and intensive quenching. Journal of Manufacturing Processes, 28, 523-530
Kütük, M. A., Göv, İ., A finite element removal method for 3D topology optimization, Advances in Mechanical Engineering, 2013, 5, 413463
Nega, H. F., Hui, Y. Study of Fatigue Analysis of Vehicle Truck Chassis, International Journal of Science and Research, 2013, 4(5), 1636-1640
Hamouda, A. M. S., Sulaiman, S., & Lau, C. K., Finite element analysis on the effect of workpiece geometry on the quenching of ST50 steel. Journal of Materials Processing Technology, 2001 119(1-3), 354-360
MIT, On the Road in 2035: Reducing Transportation’s Petroleum Consumption and GHG Emissions. Massachusetts Institute of Technology, 2008
Çoklu Yükleme Koşulları Altında Kamyon Şasisinin Topoloji Optimizasyonu
Tasarım aşamasında, ağırlık-mukavemet dengesi minimum ağırlık değerini elde etmek için en önemli faktördür. Geleneksel tasarım uygulamalarında bu dengeyi sağlamak için deneme ve yanılma yöntemi kullanılmıştır. Son yıllarda, bu dengeyi hesaplamak için topoloji optimizasyon yöntemleri kullanılmaktadır. Topoloji optimizasyonu, uygulanan yükler altında verilen sınırlamalara ve sınır koşullarına göre malzeme tasarım alanını optimize eden matematiksel model olarak tanımlanabilir. Ayrıca topoloji optimizasyonu sayesinde malzeme rijitlik açısından dengelenebilir. Topoloji optimizasyonunun temel amacı, aynı özelliklere sahip güçlü ve hafif parçalar elde etmenin yanı sıra, parçalardaki malzeme miktarını azaltmaktır Taşıtların ağırlığı, yapısal mühendislik uygulamalarında yakıt tüketimi açısından etkili parametrelerden biridir. Araçlar sürüş esnasında ağırlık yüküne, fren yüküne ve viraj yüküne maruz kalmaktadır. Bu nedenle, bu çalışma kapsamında, kamyon şasisinin topoloji optimizasyonu bu yükleme koşulları altında uygulanmıştır. Önerilen çalışmayı gerçekleştirmek için ANSYS workbench programı kullanılmıştır. Şasinin deformasyon ve gerilme değerleri incelenmiştir. Optimize edilmiş model geleneksel modelle karşılaştırılmıştır. Çalışma sonucunda kamyon şasisinde izin verilen gerilme değerleri aşılmaksızın yaklaşık %14 oranında kütle azalımı elde edilmiştir.
Fui, T. H., Rahman, R. A., Statics and Dynamics Structural Analysis of A 4.5 Ton Truck Chassis, Jurnal Mekanikal, 2007, 24, 56-67
Aykanat, B., Bir Kamyon Şasisinin Sonlu Elemanlar Yöntemi ile Analizi, Dokuz Eylül Üniversitesi Mühendislik Fakültesi Makine Mühendisliği Bölümü, 2016
Patel H., Panchal, K. C., Jadav, C, S., Structural Analysis of Truck Chassis Frame and Design Optimization for Weight Reduction, International Journal of Engineering and Advanced Technology, 2013, 2(4), 665-668
Rahman, R. A., Tamin, M. N., Kurdi O., Stress Analysis of Heavy Duty Truck Chassis as a Preliminary Data for Its Fatıgue Life Prediction Using Fem, Jurnal Mekanikal, 2008, 26, 76-85
Kurdi, O., Rahman, R. A., Samin, P. M., Optimization of Heavy Duty Truck Chassis Design by Considering Torsional Stiffness and Mass of the Structure, Applied Mechanics and Materials, 2014, 554, 459-463
Kumaş, H., Gencer C., Maraş, H., Determination Fastest Path for Heavy Vehicles Taking into Account Road Slope and Horizontal Curve Radius, Journal of the Faculty of Engineering and Architecture of Gazi University, 2012, 27(2), 385-395
Mahmoodi-k, M., Davoodabadi, I., Višnjić, V., & Afkar, A., Stress and dynamic analysis of optimized trailer chassis. Tehnički vjesnik, 2014, 21(3), 599-608
Wang J., Wang T., Yang Y., Peng Z., Li Z., Wang N., Topology Optimization Design of a Heavy Truck Frame, In: SAE-China, FISITA (eds) Proceedings of the FISITA 2012 World Automotive Congress. Lecture Notes in Electrical Engineering, 2013, 195, 219-227
Asker, H. K., Dawood, T. S., Said, A. F., Stress Analysis of Standard Truck Chassis During Ramping on Block Using Finite Element Method, ARPN Journal of Engineering and Applied Sciences, 2012, 7(2), 641-648
Tikekar, I., Damle. A., Weight Reduction of Heavy Duty Truck Chassis Through Material Optimization, International Journal of Engineering Research and General Science, 2016, 4(3), 140-146
Lowrie, J., Pang, H., & Ngaile, G. (2017). Weight reduction of heavy-duty truck components through hollow geometry and intensive quenching. Journal of Manufacturing Processes, 28, 523-530
Kütük, M. A., Göv, İ., A finite element removal method for 3D topology optimization, Advances in Mechanical Engineering, 2013, 5, 413463
Nega, H. F., Hui, Y. Study of Fatigue Analysis of Vehicle Truck Chassis, International Journal of Science and Research, 2013, 4(5), 1636-1640
Hamouda, A. M. S., Sulaiman, S., & Lau, C. K., Finite element analysis on the effect of workpiece geometry on the quenching of ST50 steel. Journal of Materials Processing Technology, 2001 119(1-3), 354-360
MIT, On the Road in 2035: Reducing Transportation’s Petroleum Consumption and GHG Emissions. Massachusetts Institute of Technology, 2008
M. H. Doğru, “Topology Optimization of Truck Chassis Under Multi Loading Conditions”, ECJSE, c. 6, sy. 3, ss. 856–867, 2019, doi: 10.31202/ecjse.612531.